🚀 aditeyabaral/sentencetransformer-bert-hinglish-small
このモデルはsentence-transformersをベースとしています。文章や段落を768次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用することができます。
🚀 クイックスタート
このモデルを使用するには、いくつかの方法があります。以下では、sentence-transformersを使用する方法とHuggingFace Transformersを使用する方法を説明します。
📦 インストール
sentence-transformersをインストールすると、このモデルの使用が簡単になります。
pip install -U sentence-transformers
💻 使用例
基本的な使用法 (Sentence-Transformers)
インストールが完了したら、以下のようにモデルを使用できます。
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-small')
embeddings = model.encode(sentences)
print(embeddings)
高度な使用法 (HuggingFace Transformers)
sentence-transformersを使用せずに、このモデルを使用することもできます。まず、入力をTransformerモデルに通し、その後、文脈化された単語埋め込みに適切なプーリング操作を適用する必要があります。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 ドキュメント
評価結果
このモデルの自動評価については、Sentence Embeddings Benchmarkを参照してください。
https://seb.sbert.net
学習
このモデルは以下のパラメータで学習されました。
DataLoader
torch.utils.data.dataloader.DataLoader
の長さは4617で、以下のパラメータが使用されました。
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失関数
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
メソッドのパラメータ:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
モデルのアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用と作者