🚀 sammy786/wav2vec2-xlsr-tatar
このモデルは、MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - ttデータセット上でfacebook/wav2vec2-xls - r - 1bをファインチューニングしたバージョンです。評価セット(トレインデータセットの10%を他のデータセットとdevデータセットと結合したもの)で以下の結果を達成しています。
- 損失: 7.66
- 単語誤り率(Wer): 7.08
✨ 主な機能
このモデルは、自動音声認識タスクに特化しており、MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - ttデータセットを使用してファインチューニングされています。
📚 ドキュメント
モデルの説明
"facebook/wav2vec2-xls - r - 1b"がファインチューニングされました。
想定される用途と制限
詳細な情報は必要です。
トレーニングと評価データ
トレーニングデータは、Common voice Finnishのtrain.tsv、dev.tsvおよびother.tsvです。
トレーニング手順
トレーニングデータセットを作成するために、すべての可能なデータセットが追加され、90 - 10の分割が使用されました。
トレーニングハイパーパラメータ
トレーニング中に以下のハイパーパラメータが使用されました。
- 学習率(learning_rate): 0.000045637994662983496
- トレーニングバッチサイズ(train_batch_size): 16
- 評価バッチサイズ(eval_batch_size): 16
- 乱数シード(seed): 13
- 勾配累積ステップ数(gradient_accumulation_steps): 2
- 総トレーニングバッチサイズ(total_train_batch_size): 32
- オプティマイザ(optimizer): Adam(ベータ=(0.9, 0.999)、イプシロン=1e - 08)
- 学習率スケジューラの種類(lr_scheduler_type): cosine_with_restarts
- 学習率スケジューラのウォームアップステップ数(lr_scheduler_warmup_steps): 500
- エポック数(num_epochs): 40
- 混合精度トレーニング(mixed_precision_training): Native AMP
トレーニング結果
ステップ |
トレーニング損失 |
検証損失 |
単語誤り率(Wer) |
200 |
4.849400 |
1.874908 |
0.995232 |
400 |
1.105700 |
0.257292 |
0.367658 |
600 |
0.723000 |
0.181150 |
0.250513 |
800 |
0.660600 |
0.167009 |
0.226078 |
1000 |
0.568000 |
0.135090 |
0.177339 |
1200 |
0.721200 |
0.117469 |
0.166413 |
1400 |
0.416300 |
0.115142 |
0.153765 |
1600 |
0.346000 |
0.105782 |
0.153963 |
1800 |
0.279700 |
0.102452 |
0.146149 |
2000 |
0.273800 |
0.095818 |
0.128468 |
2200 |
0.252900 |
0.102302 |
0.133766 |
2400 |
0.255100 |
0.096592 |
0.121316 |
2600 |
0.229600 |
0.091263 |
0.124561 |
2800 |
0.213900 |
0.097748 |
0.125687 |
3000 |
0.210700 |
0.091244 |
0.125422 |
3200 |
0.202600 |
0.084076 |
0.106284 |
3400 |
0.200900 |
0.093809 |
0.113238 |
3600 |
0.192700 |
0.082918 |
0.108139 |
3800 |
0.182000 |
0.084487 |
0.103371 |
4000 |
0.167700 |
0.091847 |
0.104960 |
4200 |
0.183700 |
0.085223 |
0.103040 |
4400 |
0.174400 |
0.083862 |
0.100589 |
4600 |
0.163100 |
0.086493 |
0.099728 |
4800 |
0.162000 |
0.081734 |
0.097543 |
5000 |
0.153600 |
0.077223 |
0.092974 |
5200 |
0.153700 |
0.086217 |
0.090789 |
5400 |
0.140200 |
0.093256 |
0.100457 |
5600 |
0.142900 |
0.086903 |
0.097742 |
5800 |
0.131400 |
0.083068 |
0.095225 |
6000 |
0.126000 |
0.086642 |
0.091252 |
6200 |
0.135300 |
0.083387 |
0.091186 |
6400 |
0.126100 |
0.076479 |
0.086352 |
6600 |
0.127100 |
0.077868 |
0.086153 |
6800 |
0.118000 |
0.083878 |
0.087676 |
7000 |
0.117600 |
0.085779 |
0.091054 |
7200 |
0.113600 |
0.084197 |
0.084233 |
7400 |
0.112000 |
0.078688 |
0.081319 |
7600 |
0.110200 |
0.082534 |
0.086087 |
7800 |
0.106400 |
0.077245 |
0.080988 |
8000 |
0.102300 |
0.077497 |
0.079332 |
8200 |
0.109500 |
0.079083 |
0.088339 |
8400 |
0.095900 |
0.079721 |
0.077809 |
8600 |
0.094700 |
0.079078 |
0.079730 |
8800 |
0.097400 |
0.078785 |
0.079200 |
9000 |
0.093200 |
0.077445 |
0.077015 |
9200 |
0.088700 |
0.078207 |
0.076617 |
9400 |
0.087200 |
0.078982 |
0.076485 |
9600 |
0.089900 |
0.081209 |
0.076021 |
9800 |
0.081900 |
0.078158 |
0.075757 |
10000 |
0.080200 |
0.078074 |
0.074498 |
10200 |
0.085000 |
0.078830 |
0.073373 |
10400 |
0.080400 |
0.078144 |
0.073373 |
10600 |
0.078200 |
0.077163 |
0.073902 |
10800 |
0.080900 |
0.076394 |
0.072446 |
11000 |
0.080700 |
0.075955 |
0.071585 |
11200 |
0.076800 |
0.077031 |
0.072313 |
11400 |
0.076300 |
0.077401 |
0.072777 |
11600 |
0.076700 |
0.076613 |
0.071916 |
11800 |
0.076000 |
0.076672 |
0.071916 |
12000 |
0.077200 |
0.076490 |
0.070989 |
12200 |
0.076200 |
0.076688 |
0.070856 |
12400 |
0.074400 |
0.076780 |
0.071055 |
12600 |
0.076300 |
0.076768 |
0.071320 |
12800 |
0.077600 |
0.076727 |
0.071055 |
13000 |
0.077700 |
0.076714 |
0.071254 |
フレームワークバージョン
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
評価コマンド
mozilla - foundation/common_voice_8_0
のtest
スプリットで評価するには、以下のコマンドを実行します。
python eval.py --model_id sammy786/wav2vec2-xlsr-tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test
📄 ライセンス
このモデルは、Apache 2.0ライセンスの下で提供されています。