Legal BERTimbau Sts Base
BERTimbauを基にしたポルトガル語法律分野の意味的類似度モデル、法律文書向けに最適化
ダウンロード数 18
リリース時間 : 7/30/2022
モデル概要
これはBERTimbauを基にしたsentence-transformersモデルで、特にポルトガル語の法律分野向けに最適化されています。文や段落を1024次元の密なベクトル空間にマッピングでき、意味的類似度計算、クラスタリング、意味的検索などのタスクに使用できます。
モデル特徴
法律分野最適化
特にポルトガル語の法律文書向けに訓練・最適化されています
意味的類似度計算
法律文書間の意味的類似度を正確に計算できます
効率的なベクトル表現
テキストを1024次元の密なベクトルに変換し、後続処理を容易にします
モデル能力
意味的類似度計算
テキストベクトル化
法律文書分析
情報検索
使用事例
法律文書処理
法律文書類似性分析
異なる法律文書や条項間の意味的類似度を比較
弁護士が関連する判例や法律条項を迅速に見つけるのに役立ちます
法律情報検索
法律分野の意味的検索システムを構築
法律文書検索の精度と関連性を向上させます
🚀 rufimelo/Legal-BERTimbau-sts-base
このモデルはsentence-transformersをベースにしており、文章や段落を1024次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。rufimelo/Legal-BERTimbau-sts-baseはLegal-BERTimbau-largeをベースにしており、BERTimbauを派生元としています。ポルトガル語の法的ドメインに適応しており、ポルトガル語のデータセットを使用してSTSについて訓練されています。
🚀 クイックスタート
このモデルを使用するには、sentence-transformersをインストールする必要があります。
pip install -U sentence-transformers
その後、以下のようにモデルを使用できます。
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base')
embeddings = model.encode(sentences)
print(embeddings)
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base')
embeddings = model.encode(sentences)
print(embeddings)
高度な使用法
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 ドキュメント
評価結果STS
モデル | Assin | Assin2 | stsb_multi_mt pt | 平均 |
---|---|---|---|---|
Legal-BERTimbau-sts-base | 0.71457 | 0.73545 | 0.72383 | 0.72462 |
Legal-BERTimbau-sts-base-ma | 0.74874 | 0.79532 | 0.82254 | 0.78886 |
Legal-BERTimbau-sts-base-ma-v2 | 0.75481 | 0.80262 | 0.82178 | 0.79307 |
Legal-BERTimbau-base-TSDAE-sts | 0.78814 | 0.81380 | 0.75777 | 0.78657 |
Legal-BERTimbau-sts-large | 0.76629 | 0.82357 | 0.79120 | 0.79369 |
Legal-BERTimbau-sts-large-v2 | 0.76299 | 0.81121 | 0.81726 | 0.79715 |
Legal-BERTimbau-sts-large-ma | 0.76195 | 0.81622 | 0.82608 | 0.80142 |
Legal-BERTimbau-sts-large-ma-v2 | 0.7836 | 0.8462 | 0.8261 | 0.81863 |
Legal-BERTimbau-sts-large-ma-v3 | 0.7749 | 0.8470 | 0.8364 | 0.81943 |
Legal-BERTimbau-large-v2-sts | 0.71665 | 0.80106 | 0.73724 | 0.75165 |
Legal-BERTimbau-large-TSDAE-sts | 0.72376 | 0.79261 | 0.73635 | 0.75090 |
Legal-BERTimbau-large-TSDAE-sts-v2 | 0.81326 | 0.83130 | 0.786314 | 0.81029 |
Legal-BERTimbau-large-TSDAE-sts-v3 | 0.80703 | 0.82270 | 0.77638 | 0.80204 |
------ | ------ | ------ | ------ | ------ |
BERTimbau base Fine-tuned for STS | 0.78455 | 0.80626 | 0.82841 | 0.80640 |
BERTimbau large Fine-tuned for STS | 0.78193 | 0.81758 | 0.83784 | 0.81245 |
------ | ------ | ------ | ------ | ------ |
paraphrase-multilingual-mpnet-base-v2 | 0.71457 | 0.79831 | 0.83999 | 0.78429 |
paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s) | 0.77641 | 0.79831 | 0.84575 | 0.80682 |
訓練
rufimelo/Legal-BERTimbau-sts-baseはLegal-BERTimbau-largeをベースにしており、BERTimbauを派生元としています。意味的テキスト類似度(STS)について訓練されており、assinとassin2のデータセットを使用して微調整されています。
完全なモデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用と著者
このモデルを使用する場合は、以下の文献を引用してください。
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
情報テーブル
属性 | 詳情 |
---|---|
モデルタイプ | sentence-transformersモデル。文章や段落を1024次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。 |
訓練データ | assin、assin2、rufimelo/PortugueseLegalSentences-v0 |
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98