🚀 stjiris/bert-large-portuguese-cased-legal-mlm-sts-v1.0 (Legal BERTimbau)
このモデルは、sentence-transformers モデルです。文や段落を1024次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。stjiris/bert-large-portuguese-cased-legal-mlm-sts-v1.0 は、BERTimbau large をベースにしています。
このモデルは、学習率 3e-5 で MLM 手法を用いて、約30000の文書から抽出された法的文 で130kのトレーニングステップを行って学習されました(意味検索システムの実装において最良の性能を発揮します)。
このモデルはポルトガル語の法的ドメインに適応しており、ポルトガル語のデータセット assin、assin2、stsb_multi_mt のポルトガル語サブデータセットを使用して STS タスクで学習されています。
🚀 クイックスタート
必要なライブラリのインストール
pip install -U sentence-transformers
モデルの使用例
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('stjiris/bert-large-portuguese-cased-legal-mlm-sts-v1.0')
embeddings = model.encode(sentences)
print(embeddings)
HuggingFace Transformersを使用した場合
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('stjiris/bert-large-portuguese-cased-legal-mlm-sts-v1.0')
model = AutoModel.from_pretrained('stjiris/bert-large-portuguese-cased-legal-mlm-sts-v1.0')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細ドキュメント
モデルのアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1028, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
モデルの評価指標
Property |
Details |
Model Type |
sentence-transformers |
Training Data |
assin, assin2, stjiris/portuguese-legal-sentences-v1.0 |
Pearson Correlation - assin Dataset |
0.7716333759993093 |
Pearson Correlation - assin2 Dataset |
0.8403302138785704 |
Pearson Correlation - stsb_multi_mt pt Dataset |
0.8249826985133595 |
引用情報
このモデルを使用する場合は、以下の文献を引用してください。
@InProceedings{MeloSemantic,
author="Melo, Rui
and Santos, Pedro A.
and Dias, Jo{\~a}o",
editor="Moniz, Nuno
and Vale, Zita
and Cascalho, Jos{\'e}
and Silva, Catarina
and Sebasti{\~a}o, Raquel",
title="A Semantic Search System for the Supremo Tribunal de Justi{\c{c}}a",
booktitle="Progress in Artificial Intelligence",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="142--154",
abstract="Many information retrieval systems use lexical approaches to retrieve information. Such approaches have multiple limitations, and these constraints are exacerbated when tied to specific domains, such as the legal one. Large language models, such as BERT, deeply understand a language and may overcome the limitations of older methodologies, such as BM25. This work investigated and developed a prototype of a Semantic Search System to assist the Supremo Tribunal de Justi{\c{c}}a (Portuguese Supreme Court of Justice) in its decision-making process. We built a Semantic Search System that uses specially trained BERT models (Legal-BERTimbau variants) and a Hybrid Search System that incorporates both lexical and semantic techniques by combining the capabilities of BM25 and the potential of Legal-BERTimbau. In this context, we obtained a {\$}{\$}335{\backslash}{\%}{\$}{\$}335{\%}increase on the discovery metric when compared to BM25 for the first query result. This work also provides information on the most relevant techniques for training a Large Language Model adapted to Portuguese jurisprudence and introduces a new technique of Metadata Knowledge Distillation.",
isbn="978-3-031-49011-8"
}
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}