St Polish Kartonberta Base Alpha V1
モデル概要
モデル特徴
モデル能力
使用事例
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb license: lgpl language:
- pl pipeline_tag: sentence-similarity model-index:
- name: st-polish-kartonberta-base-alpha-v1
results:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- type: v_measure value: 32.85180358455615
- task:
type: Classification
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: default
split: test
revision: None
metrics:
- type: accuracy value: 40.188866799204774
- type: f1 value: 34.71127012684797
- task:
type: Retrieval
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 30.939
- type: map_at_10 value: 47.467999999999996
- type: map_at_100 value: 48.303000000000004
- type: map_at_1000 value: 48.308
- type: map_at_3 value: 43.22
- type: map_at_5 value: 45.616
- type: mrr_at_1 value: 31.863000000000003
- type: mrr_at_10 value: 47.829
- type: mrr_at_100 value: 48.664
- type: mrr_at_1000 value: 48.67
- type: mrr_at_3 value: 43.492
- type: mrr_at_5 value: 46.006
- type: ndcg_at_1 value: 30.939
- type: ndcg_at_10 value: 56.058
- type: ndcg_at_100 value: 59.562000000000005
- type: ndcg_at_1000 value: 59.69799999999999
- type: ndcg_at_3 value: 47.260000000000005
- type: ndcg_at_5 value: 51.587
- type: precision_at_1 value: 30.939
- type: precision_at_10 value: 8.329
- type: precision_at_100 value: 0.984
- type: precision_at_1000 value: 0.1
- type: precision_at_3 value: 19.654
- type: precision_at_5 value: 13.898
- type: recall_at_1 value: 30.939
- type: recall_at_10 value: 83.286
- type: recall_at_100 value: 98.43499999999999
- type: recall_at_1000 value: 99.502
- type: recall_at_3 value: 58.962
- type: recall_at_5 value: 69.488
- task:
type: Classification
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: default
split: test
revision: None
metrics:
- type: accuracy value: 67.69000000000001
- type: ap value: 21.078799692467182
- type: f1 value: 56.80107173953953
- task:
type: PairClassification
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 89.2
- type: cos_sim_ap value: 79.11674608786898
- type: cos_sim_f1 value: 68.83468834688347
- type: cos_sim_precision value: 70.94972067039106
- type: cos_sim_recall value: 66.84210526315789
- type: dot_accuracy value: 89.2
- type: dot_ap value: 79.11674608786898
- type: dot_f1 value: 68.83468834688347
- type: dot_precision value: 70.94972067039106
- type: dot_recall value: 66.84210526315789
- type: euclidean_accuracy value: 89.2
- type: euclidean_ap value: 79.11674608786898
- type: euclidean_f1 value: 68.83468834688347
- type: euclidean_precision value: 70.94972067039106
- type: euclidean_recall value: 66.84210526315789
- type: manhattan_accuracy value: 89.1
- type: manhattan_ap value: 79.1220443374692
- type: manhattan_f1 value: 69.02173913043478
- type: manhattan_precision value: 71.34831460674157
- type: manhattan_recall value: 66.84210526315789
- type: max_accuracy value: 89.2
- type: max_ap value: 79.1220443374692
- type: max_f1 value: 69.02173913043478
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 91.41534744278998
- type: cos_sim_spearman value: 92.12681551821147
- type: euclidean_pearson value: 91.74369794485992
- type: euclidean_spearman value: 92.12685848456046
- type: manhattan_pearson value: 91.66651938751657
- type: manhattan_spearman value: 92.057603126734
- task:
type: Retrieval
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 5.8709999999999996
- type: map_at_10 value: 12.486
- type: map_at_100 value: 16.897000000000002
- type: map_at_1000 value: 18.056
- type: map_at_3 value: 8.958
- type: map_at_5 value: 10.57
- type: mrr_at_1 value: 44.0
- type: mrr_at_10 value: 53.830999999999996
- type: mrr_at_100 value: 54.54
- type: mrr_at_1000 value: 54.568000000000005
- type: mrr_at_3 value: 51.87500000000001
- type: mrr_at_5 value: 53.113
- type: ndcg_at_1 value: 34.625
- type: ndcg_at_10 value: 26.996
- type: ndcg_at_100 value: 31.052999999999997
- type: ndcg_at_1000 value: 38.208
- type: ndcg_at_3 value: 29.471000000000004
- type: ndcg_at_5 value: 28.364
- type: precision_at_1 value: 44.0
- type: precision_at_10 value: 21.45
- type: precision_at_100 value: 6.837
- type: precision_at_1000 value: 1.6019999999999999
- type: precision_at_3 value: 32.333
- type: precision_at_5 value: 27.800000000000004
- type: recall_at_1 value: 5.8709999999999996
- type: recall_at_10 value: 17.318
- type: recall_at_100 value: 36.854
- type: recall_at_1000 value: 60.468999999999994
- type: recall_at_3 value: 10.213999999999999
- type: recall_at_5 value: 13.364
- task:
type: Retrieval
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 10.289
- type: map_at_10 value: 18.285999999999998
- type: map_at_100 value: 19.743
- type: map_at_1000 value: 19.964000000000002
- type: map_at_3 value: 15.193000000000001
- type: map_at_5 value: 16.962
- type: mrr_at_1 value: 21.914
- type: mrr_at_10 value: 30.653999999999996
- type: mrr_at_100 value: 31.623
- type: mrr_at_1000 value: 31.701
- type: mrr_at_3 value: 27.855
- type: mrr_at_5 value: 29.514000000000003
- type: ndcg_at_1 value: 21.914
- type: ndcg_at_10 value: 24.733
- type: ndcg_at_100 value: 31.253999999999998
- type: ndcg_at_1000 value: 35.617
- type: ndcg_at_3 value: 20.962
- type: ndcg_at_5 value: 22.553
- type: precision_at_1 value: 21.914
- type: precision_at_10 value: 7.346
- type: precision_at_100 value: 1.389
- type: precision_at_1000 value: 0.214
- type: precision_at_3 value: 14.352
- type: precision_at_5 value: 11.42
- type: recall_at_1 value: 10.289
- type: recall_at_10 value: 31.459
- type: recall_at_100 value: 56.854000000000006
- type: recall_at_1000 value: 83.722
- type: recall_at_3 value: 19.457
- type: recall_at_5 value: 24.767
- task:
type: Retrieval
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 29.669
- type: map_at_10 value: 41.615
- type: map_at_100 value: 42.571999999999996
- type: map_at_1000 value: 42.662
- type: map_at_3 value: 38.938
- type: map_at_5 value: 40.541
- type: mrr_at_1 value: 59.338
- type: mrr_at_10 value: 66.93900000000001
- type: mrr_at_100 value: 67.361
- type: mrr_at_1000 value: 67.38499999999999
- type: mrr_at_3 value: 65.384
- type: mrr_at_5 value: 66.345
- type: ndcg_at_1 value: 59.338
- type: ndcg_at_10 value: 50.607
- type: ndcg_at_100 value: 54.342999999999996
- type: ndcg_at_1000 value: 56.286
- type: ndcg_at_3 value: 46.289
- type: ndcg_at_5 value: 48.581
- type: precision_at_1 value: 59.338
- type: precision_at_10 value: 10.585
- type: precision_at_100 value: 1.353
- type: precision_at_1000 value: 0.161
- type: precision_at_3 value: 28.877000000000002
- type: precision_at_5 value: 19.133
- type: recall_at_1 value: 29.669
- type: recall_at_10 value: 52.92400000000001
- type: recall_at_100 value: 67.657
- type: recall_at_1000 value: 80.628
- type: recall_at_3 value: 43.315
- type: recall_at_5 value: 47.833
- task:
type: Retrieval
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 0.997
- type: map_at_10 value: 7.481999999999999
- type: map_at_100 value: 20.208000000000002
- type: map_at_1000 value: 25.601000000000003
- type: map_at_3 value: 3.055
- type: map_at_5 value: 4.853
- type: mrr_at_1 value: 55.814
- type: mrr_at_10 value: 64.651
- type: mrr_at_100 value: 65.003
- type: mrr_at_1000 value: 65.05199999999999
- type: mrr_at_3 value: 62.403
- type: mrr_at_5 value: 64.031
- type: ndcg_at_1 value: 44.186
- type: ndcg_at_10 value: 43.25
- type: ndcg_at_100 value: 40.515
- type: ndcg_at_1000 value: 48.345
- type: ndcg_at_3 value: 45.829
- type: ndcg_at_5 value: 46.477000000000004
- type: precision_at_1 value: 55.814
- type: precision_at_10 value: 50.465
- type: precision_at_100 value: 25.419000000000004
- type: precision_at_1000 value: 5.0840000000000005
- type: precision_at_3 value: 58.14
- type: precision_at_5 value: 57.67400000000001
- type: recall_at_1 value: 0.997
- type: recall_at_10 value: 8.985999999999999
- type: recall_at_100 value: 33.221000000000004
- type: recall_at_1000 value: 58.836999999999996
- type: recall_at_3 value: 3.472
- type: recall_at_5 value: 5.545
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy value: 68.19771351714861
- type: f1 value: 64.75039989217822
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy value: 73.9677202420982
- type: f1 value: 73.72287107577753
- task:
type: Retrieval
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 5.167
- type: map_at_10 value: 10.791
- type: map_at_100 value: 14.072999999999999
- type: map_at_1000 value: 15.568000000000001
- type: map_at_3 value: 7.847999999999999
- type: map_at_5 value: 9.112
- type: mrr_at_1 value: 42.105
- type: mrr_at_10 value: 49.933
- type: mrr_at_100 value: 50.659
- type: mrr_at_1000 value: 50.705
- type: mrr_at_3 value: 47.988
- type: mrr_at_5 value: 49.056
- type: ndcg_at_1 value: 39.938
- type: ndcg_at_10 value: 31.147000000000002
- type: ndcg_at_100 value: 29.336000000000002
- type: ndcg_at_1000 value: 38.147
- type: ndcg_at_3 value: 35.607
- type: ndcg_at_5 value: 33.725
- type: precision_at_1 value: 41.486000000000004
- type: precision_at_10 value: 23.901
- type: precision_at_100 value: 7.960000000000001
- type: precision_at_1000 value: 2.086
- type: precision_at_3 value: 33.437
- type: precision_at_5 value: 29.598000000000003
- type: recall_at_1 value: 5.167
- type: recall_at_10 value: 14.244000000000002
- type: recall_at_100 value: 31.192999999999998
- type: recall_at_1000 value: 62.41799999999999
- type: recall_at_3 value: 8.697000000000001
- type: recall_at_5 value: 10.911
- task:
type: Retrieval
dataset:
type: nq-pl
name: MTEB NQ-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 14.417
- type: map_at_10 value: 23.330000000000002
- type: map_at_100 value: 24.521
- type: map_at_1000 value: 24.604
- type: map_at_3 value: 20.076
- type: map_at_5 value: 21.854000000000003
- type: mrr_at_1 value: 16.454
- type: mrr_at_10 value: 25.402
- type: mrr_at_100 value: 26.411
- type: mrr_at_1000 value: 26.479000000000003
- type: mrr_at_3 value: 22.369
- type: mrr_at_5 value: 24.047
- type: ndcg_at_1 value: 16.454
- type: ndcg_at_10 value: 28.886
- type: ndcg_at_100 value: 34.489999999999995
- type: ndcg_at_1000 value: 36.687999999999995
- type: ndcg_at_3 value: 22.421
- type: ndcg_at_5 value: 25.505
- type: precision_at_1 value: 16.454
- type: precision_at_10 value: 5.252
- type: precision_at_100 value: 0.8410000000000001
- type: precision_at_1000 value: 0.105
- type: precision_at_3 value: 10.428999999999998
- type: precision_at_5 value: 8.019
- type: recall_at_1 value: 14.417
- type: recall_at_10 value: 44.025
- type: recall_at_100 value: 69.404
- type: recall_at_1000 value: 86.18900000000001
- type: recall_at_3 value: 26.972
- type: recall_at_5 value: 34.132
- task:
type: Classification
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: default
split: test
revision: None
metrics:
- type: accuracy value: 66.55082536924412
- type: ap value: 76.44962281293184
- type: f1 value: 63.899803692180434
- task:
type: PairClassification
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 86.5
- type: cos_sim_ap value: 92.65086645409387
- type: cos_sim_f1 value: 89.39157566302653
- type: cos_sim_precision value: 84.51327433628319
- type: cos_sim_recall value: 94.86754966887418
- type: dot_accuracy value: 86.5
- type: dot_ap value: 92.65086645409387
- type: dot_f1 value: 89.39157566302653
- type: dot_precision value: 84.51327433628319
- type: dot_recall value: 94.86754966887418
- type: euclidean_accuracy value: 86.5
- type: euclidean_ap value: 92.65086645409387
- type: euclidean_f1 value: 89.39157566302653
- type: euclidean_precision value: 84.51327433628319
- type: euclidean_recall value: 94.86754966887418
- type: manhattan_accuracy value: 86.5
- type: manhattan_ap value: 92.64975544736456
- type: manhattan_f1 value: 89.33852140077822
- type: manhattan_precision value: 84.28781204111601
- type: manhattan_recall value: 95.03311258278146
- type: max_accuracy value: 86.5
- type: max_ap value: 92.65086645409387
- type: max_f1 value: 89.39157566302653
- task:
type: PairClassification
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 95.64007421150278
- type: cos_sim_ap value: 98.42114841894346
- type: cos_sim_f1 value: 92.8895612708018
- type: cos_sim_precision value: 92.1921921921922
- type: cos_sim_recall value: 93.59756097560977
- type: dot_accuracy value: 95.64007421150278
- type: dot_ap value: 98.42114841894346
- type: dot_f1 value: 92.8895612708018
- type: dot_precision value: 92.1921921921922
- type: dot_recall value: 93.59756097560977
- type: euclidean_accuracy value: 95.64007421150278
- type: euclidean_ap value: 98.42114841894346
- type: euclidean_f1 value: 92.8895612708018
- type: euclidean_precision value: 92.1921921921922
- type: euclidean_recall value: 93.59756097560977
- type: manhattan_accuracy value: 95.82560296846012
- type: manhattan_ap value: 98.38712415914046
- type: manhattan_f1 value: 93.19213313161876
- type: manhattan_precision value: 92.49249249249249
- type: manhattan_recall value: 93.90243902439023
- type: max_accuracy value: 95.82560296846012
- type: max_ap value: 98.42114841894346
- type: max_f1 value: 93.19213313161876
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: default
split: test
revision: None
metrics:
- type: accuracy value: 68.40720221606648
- type: f1 value: 67.09084289613526
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: default
split: test
revision: None
metrics:
- type: accuracy value: 38.056680161943326
- type: f1 value: 32.87731504372395
- task:
type: Retrieval
dataset:
type: quora-pl
name: MTEB Quora-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 65.422
- type: map_at_10 value: 79.259
- type: map_at_100 value: 80.0
- type: map_at_1000 value: 80.021
- type: map_at_3 value: 76.16199999999999
- type: map_at_5 value: 78.03999999999999
- type: mrr_at_1 value: 75.26
- type: mrr_at_10 value: 82.39699999999999
- type: mrr_at_100 value: 82.589
- type: mrr_at_1000 value: 82.593
- type: mrr_at_3 value: 81.08999999999999
- type: mrr_at_5 value: 81.952
- type: ndcg_at_1 value: 75.3
- type: ndcg_at_10 value: 83.588
- type: ndcg_at_100 value: 85.312
- type: ndcg_at_1000 value: 85.536
- type: ndcg_at_3 value: 80.128
- type: ndcg_at_5 value: 81.962
- type: precision_at_1 value: 75.3
- type: precision_at_10 value: 12.856000000000002
- type: precision_at_100 value: 1.508
- type: precision_at_1000 value: 0.156
- type: precision_at_3 value: 35.207
- type: precision_at_5 value: 23.316
- type: recall_at_1 value: 65.422
- type: recall_at_10 value: 92.381
- type: recall_at_100 value: 98.575
- type: recall_at_1000 value: 99.85300000000001
- type: recall_at_3 value: 82.59100000000001
- type: recall_at_5 value: 87.629
- task:
type: Retrieval
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 2.52
- type: map_at_10 value: 6.814000000000001
- type: map_at_100 value: 8.267
- type: map_at_1000 value: 8.565000000000001
- type: map_at_3 value: 4.736
- type: map_at_5 value: 5.653
- type: mrr_at_1 value: 12.5
- type: mrr_at_10 value: 20.794999999999998
- type: mrr_at_100 value: 22.014
- type: mrr_at_1000 value: 22.109
- type: mrr_at_3 value: 17.8
- type: mrr_at_5 value: 19.42
- type: ndcg_at_1 value: 12.5
- type: ndcg_at_10 value: 12.209
- type: ndcg_at_100 value: 18.812
- type: ndcg_at_1000 value: 24.766
- type: ndcg_at_3 value: 10.847
- type: ndcg_at_5 value: 9.632
- type: precision_at_1 value: 12.5
- type: precision_at_10 value: 6.660000000000001
- type: precision_at_100 value: 1.6340000000000001
- type: precision_at_1000 value: 0.307
- type: precision_at_3 value: 10.299999999999999
- type: precision_at_5 value: 8.66
- type: recall_at_1 value: 2.52
- type: recall_at_10 value: 13.495
- type: recall_at_100 value: 33.188
- type: recall_at_1000 value: 62.34499999999999
- type: recall_at_3 value: 6.245
- type: recall_at_5 value: 8.76
- task:
type: PairClassification
dataset:
type: PL-MTEB/sicke-pl-pairclassification
name: MTEB SICK-E-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy value: 86.13942111699959
- type: cos_sim_ap value: 81.47480017120256
- type: cos_sim_f1 value: 74.79794268919912
- type: cos_sim_precision value: 77.2382397572079
- type: cos_sim_recall value: 72.50712250712252
- type: dot_accuracy value: 86.13942111699959
- type: dot_ap value: 81.47478531367476
- type: dot_f1 value: 74.79794268919912
- type: dot_precision value: 77.2382397572079
- type: dot_recall value: 72.50712250712252
- type: euclidean_accuracy value: 86.13942111699959
- type: euclidean_ap value: 81.47478531367476
- type: euclidean_f1 value: 74.79794268919912
- type: euclidean_precision value: 77.2382397572079
- type: euclidean_recall value: 72.50712250712252
- type: manhattan_accuracy value: 86.15980432123929
- type: manhattan_ap value: 81.40798042612397
- type: manhattan_f1 value: 74.86116253239543
- type: manhattan_precision value: 77.9491133384734
- type: manhattan_recall value: 72.00854700854701
- type: max_accuracy value: 86.15980432123929
- type: max_ap value: 81.47480017120256
- type: max_f1 value: 74.86116253239543
- task:
type: STS
dataset:
type: PL-MTEB/sickr-pl-sts
name: MTEB SICK-R-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson value: 84.27525342551935
- type: cos_sim_spearman value: 79.50631730805885
- type: euclidean_pearson value: 82.07169123942028
- type: euclidean_spearman value: 79.50631887406465
- type: manhattan_pearson value: 81.98288826317463
- type: manhattan_spearman value: 79.4244081650332
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson value: 35.59400236598834
- type: cos_sim_spearman value: 36.782560207852846
- type: euclidean_pearson value: 28.546177668542942
- type: euclidean_spearman value: 36.68394223635756
- type: manhattan_pearson value: 28.45606963909248
- type: manhattan_spearman value: 36.475975118547524
- task:
type: Retrieval
dataset:
type: scifact-pl
name: MTEB SciFact-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 41.028
- type: map_at_10 value: 52.23799999999999
- type: map_at_100 value: 52.905
- type: map_at_1000 value: 52.945
- type: map_at_3 value: 49.102000000000004
- type: map_at_5 value: 50.992000000000004
- type: mrr_at_1 value: 43.333
- type: mrr_at_10 value: 53.551
- type: mrr_at_100 value: 54.138
- type: mrr_at_1000 value: 54.175
- type: mrr_at_3 value: 51.056000000000004
- type: mrr_at_5 value: 52.705999999999996
- type: ndcg_at_1 value: 43.333
- type: ndcg_at_10 value: 57.731
- type: ndcg_at_100 value: 61.18599999999999
- type: ndcg_at_1000 value: 62.261
- type: ndcg_at_3 value: 52.276999999999994
- type: ndcg_at_5 value: 55.245999999999995
- type: precision_at_1 value: 43.333
- type: precision_at_10 value: 8.267
- type: precision_at_100 value: 1.02
- type: precision_at_1000 value: 0.11100000000000002
- type: precision_at_3 value: 21.444
- type: precision_at_5 value: 14.533
- type: recall_at_1 value: 41.028
- type: recall_at_10 value: 73.111
- type: recall_at_100 value: 89.533
- type: recall_at_1000 value: 98.0
- type: recall_at_3 value: 58.744
- type: recall_at_5 value: 66.106
- task:
type: Retrieval
dataset:
type: trec-covid-pl
name: MTEB TRECCOVID-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1 value: 0.146
- type: map_at_10 value: 1.09
- type: map_at_100 value: 6.002
- type: map_at_1000 value: 15.479999999999999
- type: map_at_3 value: 0.41000000000000003
- type: map_at_5 value: 0.596
- type: mrr_at_1 value: 54.0
- type: mrr_at_10 value: 72.367
- type: mrr_at_100 value: 72.367
- type: mrr_at_1000 value: 72.367
- type: mrr_at_3 value: 70.333
- type: mrr_at_5 value: 72.033
- type: ndcg_at_1 value: 48.0
- type: ndcg_at_10 value: 48.827
- type: ndcg_at_100 value: 38.513999999999996
- type: ndcg_at_1000 value: 37.958
- type: ndcg_at_3 value: 52.614000000000004
- type: ndcg_at_5 value: 51.013
- type: precision_at_1 value: 54.0
- type: precision_at_10 value: 53.6
- type: precision_at_100 value: 40.300000000000004
- type: precision_at_1000 value: 17.276
- type: precision_at_3 value: 57.333
- type: precision_at_5 value: 55.60000000000001
- type: recall_at_1 value: 0.146
- type: recall_at_10 value: 1.438
- type: recall_at_100 value: 9.673
- type: recall_at_1000 value: 36.870999999999995
- type: recall_at_3 value: 0.47400000000000003
- type: recall_at_5 value: 0.721
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
Model Card for st-polish-kartonberta-base-alpha-v1
This sentence transformer model is designed to convert text content into a 768-float vector space, ensuring an effective representation. It aims to be proficient in tasks involving sentence / document similarity.
The model has been released in its alpha version. Numerous potential enhancements could boost its performance, such as adjusting training hyperparameters or extending the training duration (currently limited to only one epoch). The main reason is limited GPU.
Model Description
- Developed by: Bartłomiej Orlik, https://www.linkedin.com/in/bartłomiej-orlik/
- Model type: RoBERTa Sentence Transformer
- Language: Polish
- License: LGPL-3.0
- Trained from model: sdadas/polish-roberta-base-v2: https://huggingface.co/sdadas/polish-roberta-base-v2
How to Get Started with the Model
Use the code below to get started with the model.
Using Sentence-Transformers
You can use the model with sentence-transformers:
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('OrlikB/st-polish-kartonberta-base-alpha-v1')
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'
embeddings_1 = model.encode(text_1, normalize_embeddings=True)
embeddings_2 = model.encode(text_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
Using HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
def encode_text(text):
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt', max_length=512)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = model_output[0][:, 0]
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings.squeeze().numpy()
cosine_similarity = lambda a, b: np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
tokenizer = AutoTokenizer.from_pretrained('OrlikB/st-polish-kartonberta-base-alpha-v1')
model = AutoModel.from_pretrained('OrlikB/st-polish-kartonberta-base-alpha-v1')
model.eval()
text_1 = 'Jestem wielkim fanem opakowań tekturowych'
text_2 = 'Bardzo podobają mi się kartony'
embeddings_1 = encode_text(text_1)
embeddings_2 = encode_text(text_2)
print(cosine_similarity(embeddings_1, embeddings_2))
*Note: You can use the encode_text function for demonstration purposes. For the best experience, it's recommended to process text in batches.
Evaluation
MTEB for Polish Language
Rank | Model | Model Size (GB) | Embedding Dimensions | Sequence Length | Average (26 datasets) | Classification Average (7 datasets) | Clustering Average (1 datasets) | Pair Classification Average (4 datasets) | Retrieval Average (11 datasets) | STS Average (3 datasets) |
---|---|---|---|---|---|---|---|---|---|---|
1 | multilingual-e5-large | 2.24 | 1024 | 514 | 58.25 | 60.51 | 24.06 | 84.58 | 47.82 | 67.52 |
2 | st-polish-kartonberta-base-alpha-v1 | 0.5 | 768 | 514 | 56.92 | 60.44 | 32.85 | 87.92 | 42.19 | 69.47 |
3 | multilingual-e5-base | 1.11 | 768 | 514 | 54.18 | 57.01 | 18.62 | 82.08 | 42.5 | 65.07 |
4 | multilingual-e5-small | 0.47 | 384 | 512 | 53.15 | 54.35 | 19.64 | 81.67 | 41.52 | 66.08 |
5 | st-polish-paraphrase-from-mpnet | 0.5 | 768 | 514 | 53.06 | 57.49 | 25.09 | 87.04 | 36.53 | 67.39 |
6 | st-polish-paraphrase-from-distilroberta | 0.5 | 768 | 514 | 52.65 | 58.55 | 31.11 | 87 | 33.96 | 68.78 |
More Information
I developed this model as a personal scientific initiative.
I plan to start the development on a new ST model. However, due to limited computational resources, I suspended further work to create a larger or enhanced version of current model.







