🚀 SpatialBot-3B
SpatialBotは、深度マップを正確に理解し、それを利用して高度なタスクを実行することで、空間理解と推論能力を備えたVLM(視覚言語モデル)です。
このHugging Faceリポジトリでは、Phi-2とSigLIPに基づく、マージされたSpatialBot-3Bを提供しています。このモデルは、一般的なVLMタスクやSpatialBenchのような空間理解ベンチマークで良好な性能を発揮します。
🚀 クイックスタート
⚠️ 重要提示
2024年8月28日にリポジトリとクイックスタートコードを更新しました。この日以前にモデルとコードをダウンロードした場合は、更新してください。
📦 インストール
まず、依存関係をインストールします。
pip install torch transformers accelerate pillow numpy
💻 使用例
基本的な使用法
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
import numpy as np
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
device = 'cuda'
model_name = 'RussRobin/SpatialBot-3B'
offset_bos = 0
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True)
prompt = 'What is the depth value of point <0.5,0.2>? Answer directly from depth map.'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image 1>\n<image 2>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image 1>\n<image 2>\n')]
input_ids = torch.tensor(text_chunks[0] + [-201] + [-202] + text_chunks[1][offset_bos:], dtype=torch.long).unsqueeze(0).to(device)
image1 = Image.open('rgb.jpg')
image2 = Image.open('depth.png')
channels = len(image2.getbands())
if channels == 1:
img = np.array(image2)
height, width = img.shape
three_channel_array = np.zeros((height, width, 3), dtype=np.uint8)
three_channel_array[:, :, 0] = (img // 1024) * 4
three_channel_array[:, :, 1] = (img // 32) * 8
three_channel_array[:, :, 2] = (img % 32) * 8
image2 = Image.fromarray(three_channel_array, 'RGB')
image_tensor = model.process_images([image1,image2], model.config).to(dtype=model.dtype, device=device)
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True,
repetition_penalty=1.0
)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
📚 詳細情報
📄 ライセンス
このプロジェクトはCC BY 4.0ライセンスの下で提供されています。
属性 |
详情 |
パイプラインタグ |
視覚的質問応答 |
データセット |
RussRobin/SpatialQA |
言語 |
en |
タグ |
Embodied AI、MLLM、VLM、空間理解、Phi-2 |