🚀 BioBERTpt - ポルトガル語の臨床および生物医学用BERT
「BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition」という論文には、ポルトガル語用の臨床および生物医学分野のBERTベースのモデルが含まれています。これらのモデルはBERT-Multilingual-Casedで初期化され、臨床ノートと生物医学文献で訓練されています。
このモデルカードでは、BioBERTpt(clin)モデル、つまりBioBERTptの臨床版について説明します。このモデルは、ブラジルの病院の電子カルテから得られた臨床記述を用いて訓練されています。
🚀 クイックスタート
モデルの使用方法
transformersライブラリを通じてモデルを読み込みます。
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-clin")
model = AutoModel.from_pretrained("pucpr/biobertpt-clin")
📚 ドキュメント
詳細情報
元の論文「BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition」を参照して、ポルトガル語の固有表現抽出タスクに関する追加の詳細と性能を確認してください。
謝辞
この研究は、Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)によって一部資金提供されています(財政コード001)。
引用
@inproceedings{schneider-etal-2020-biobertpt,
title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition",
author = "Schneider, Elisa Terumi Rubel and
de Souza, Jo{\~a}o Vitor Andrioli and
Knafou, Julien and
Oliveira, Lucas Emanuel Silva e and
Copara, Jenny and
Gumiel, Yohan Bonescki and
Oliveira, Lucas Ferro Antunes de and
Paraiso, Emerson Cabrera and
Teodoro, Douglas and
Barra, Cl{\'a}udia Maria Cabral Moro",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7",
pages = "65--72",
abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.",
}
質問はこちら
BioBERTptのリポジトリにGitHubのissueを投稿してください。