🚀 roberta-base-wechsel-german
WECHSELを使用して訓練されたモデルで、単言語言語モデルの多言語転移のためのサブワード埋め込みの効果的な初期化を実現します。
コードはこちらを参照してください:https://github.com/CPJKU/wechsel
論文はこちらを参照してください:https://aclanthology.org/2022.naacl-main.293/
🚀 クイックスタート
このモデルは、WECHSEL手法を用いて訓練された言語モデルです。コードや論文へのリンクを上記に示しています。
✨ 主な機能
- WECHSEL手法を用いたサブワード埋め込みの効果的な初期化により、単言語言語モデルの多言語転移を実現。
- 複数の言語(フランス語、ドイツ語、中国語、スワヒリ語)での性能評価が行われている。
📚 ドキュメント
性能評価
RoBERTa
モデル |
NLIスコア |
NERスコア |
平均スコア |
roberta-base-wechsel-french |
82.43 |
90.88 |
86.65 |
camembert-base |
80.88 |
90.26 |
85.57 |
モデル |
NLIスコア |
NERスコア |
平均スコア |
roberta-base-wechsel-german |
81.79 |
89.72 |
85.76 |
deepset/gbert-base |
78.64 |
89.46 |
84.05 |
モデル |
NLIスコア |
NERスコア |
平均スコア |
roberta-base-wechsel-chinese |
78.32 |
80.55 |
79.44 |
bert-base-chinese |
76.55 |
82.05 |
79.30 |
モデル |
NLIスコア |
NERスコア |
平均スコア |
roberta-base-wechsel-swahili |
75.05 |
87.39 |
81.22 |
xlm-roberta-base |
69.18 |
87.37 |
78.28 |
GPT2
モデル |
PPL |
gpt2-wechsel-french |
19.71 |
gpt2 (retrained from scratch) |
20.47 |
モデル |
PPL |
gpt2-wechsel-german |
26.8 |
gpt2 (retrained from scratch) |
27.63 |
モデル |
PPL |
gpt2-wechsel-chinese |
51.97 |
gpt2 (retrained from scratch) |
52.98 |
モデル |
PPL |
gpt2-wechsel-swahili |
10.14 |
gpt2 (retrained from scratch) |
10.58 |
詳細は論文を参照してください。
📄 ライセンス
このプロジェクトはMITライセンスの下で提供されています。
🔧 技術詳細
引用
@inproceedings{minixhofer-etal-2022-wechsel,
title = "{WECHSEL}: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models",
author = "Minixhofer, Benjamin and
Paischer, Fabian and
Rekabsaz, Navid",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.293",
pages = "3992--4006",
abstract = "Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method {--} called WECHSEL {--} to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.",
}