
Mistral Large (Feb '24)
Mistral AI が 2024 年 2 月にリリースした大型モデルで、同社の大規模言語モデルにおける初期の成果を代表します。強力な推論能力と多言語サポートを備え、複雑なタスク処理において優れた性能を発揮します。このバージョンは、高性能 AI モデル分野における Mistral の地位を確立し、ヨーロッパの AI 技術の発展に重要な貢献をしました。高性能 AI 能力が必要なプロフェッショナルなアプリケーションに適しています。
インテリジェンス(比較的弱い)
速度(遅い)
入力サポートモダリティ
はい
推論モデルかどうか
32,768
コンテキストウィンドウ
-
最大出力トークン
-
知識カットオフ
価格設定
- /M tokens
入力
- /M tokens
出力
¥43.2 /M tokens
混合価格
クイック簡易比較
Devstral Small (May '25)
¥0.1
Devstral Medium
¥0.4
Devstral
¥0.1
基本パラメータ
Mistral Large (Feb '24)技術パラメータ
パラメータ数
未発表
コンテキスト長
32.77k tokens
トレーニングデータカットオフ
オープンソースカテゴリ
Proprietary
マルチモーダルサポート
テキストのみ
スループット
リリース日
2024-02-26
応答速度
0 tokens/s
ベンチマークスコア
以下はMistral Large (Feb '24)の様々な標準ベンチマークテストでのパフォーマンスです。これらのテストは、異なるタスクやドメインにおけるモデルの能力を評価します。
インテリジェンス指数
26.41
大規模言語モデルインテリジェンスレベル
コーディング指数
19.31
コーディングタスクにおけるAIモデルのパフォーマンス指標
数学指数
26.33
数学的問題の解決、数学的推論、または数学関連タスクの実行における能力指標
MMLU Pro
51.5
大規模マルチタスクマルチモーダル理解 - テキスト、画像、音声、ビデオの理解をテスト
GPQA
35.1
大学院物理学問題評価 - ダイヤモンド科学レベルの問題で高度な物理学知識をテスト
HLE
3.4
Hugging Face Open LLMリーダーボードにおけるモデルの包括的な平均スコア
LiveCodeBench
17.8
実世界のコード作成とプログラミングコンテスト問題解決における大規模言語モデルの能力を評価する特定の評価
SciCode
20.8
科学計算または特定の科学分野のコード生成におけるモデルの能力
HumanEval
70.6
特定のHumanEvalベンチマークテストセットでAIモデルが達成したスコア
Math 500スコア
52.7
最初の500の大規模でよく知られた数学ベンチマークテストのスコア
AIMEスコア
-
高難度の数学競技問題(特にAIMEレベル)を解決するAIモデルの能力を測定する指標
GPT 5 Mini
openai

¥1.8
入力トークン/百万
¥14.4
出力トークン/百万
400k
コンテキスト長
GPT 5 Standard
openai

¥63
入力トークン/百万
¥504
出力トークン/百万
400k
コンテキスト長
GPT 5 Nano
openai

¥0.36
入力トークン/百万
¥2.88
出力トークン/百万
400k
コンテキスト長
GPT 5
openai

¥9
入力トークン/百万
¥72
出力トークン/百万
400k
コンテキスト長
GLM 4.5
chatglm

¥0.43
入力トークン/百万
¥1.01
出力トークン/百万
131k
コンテキスト長
Gemini 1.0 Pro
google

¥3.6
入力トークン/百万
¥10.8
出力トークン/百万
33k
コンテキスト長
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
入力トークン/百万
¥2.16
出力トークン/百万
1M
コンテキスト長
GPT 4
openai

¥216
入力トークン/百万
¥432
出力トークン/百万
8192
コンテキスト長