🚀 bert-italian-finetuned-ner
This model is a fine - tuned BERT model for Italian token classification, specifically NER, achieving high precision, recall, F1 - score, and accuracy on the wiki_neural dataset.
🚀 Quick Start
This model is a fine - tuned version of [dbmdz/bert - base - italian - cased](https://huggingface.co/dbmdz/bert - base - italian - cased) on the wiki_neural dataset. It achieves the following results on the evaluation set:
- Loss: 0.0361
- Precision: 0.9438
- Recall: 0.9542
- F1: 0.9490
- Accuracy: 0.9918
✨ Features
- Token Classification: Specialized in token classification tasks, especially NER for the Italian language.
- High Performance: Achieves high precision, recall, F1 - score, and accuracy on the evaluation set.
💻 Usage Examples
Basic Usage
from transformers import pipeline
ner_pipeline = pipeline("ner", model="nickprock/bert-italian-finetuned-ner", aggregation_strategy="simple")
text = "La sede storica della Olivetti è ad Ivrea"
output = ner_pipeline(text)
📚 Documentation
Intended Uses & Limitations
The model can be used on token classification, in particular NER. It is fine - tuned on the Italian language.
Training and Evaluation Data
The dataset used is wikiann
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 3
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Precision |
Recall |
F1 |
Accuracy |
0.0297 |
1.0 |
11050 |
0.0323 |
0.9324 |
0.9420 |
0.9372 |
0.9908 |
0.0173 |
2.0 |
22100 |
0.0324 |
0.9445 |
0.9514 |
0.9479 |
0.9915 |
0.0057 |
3.0 |
33150 |
0.0361 |
0.9438 |
0.9542 |
0.9490 |
0.9918 |
Framework Versions
- Transformers 4.27.3
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
📄 License
This model is released under the MIT license.
📦 Additional Information
Model Details
Property |
Details |
Model Type |
bert - italian - finetuned - ner |
Base Model |
dbmdz/bert - base - italian - cased |
Training Data |
wikiann |
Metrics |
precision, recall, f1, accuracy |
Widget Examples
- Example 1: 'Ciao, sono Giacomo. Vivo a Milano e lavoro da Armani. '
- Example 2: 'Domenica andrò allo stadio con Giovanna a guardare la Fiorentina. '
Model Index
- Name: bert - italian - finetuned - ner
- Results:
- Task:
- Type: token - classification
- Name: Token Classification
- Dataset:
- Name: wiki_neural
- Type: wiki_neural
- Config: it
- Split: validation
- Args: it
- Metrics:
- Type: precision, Value: 0.9438064759036144, Name: Precision
- Type: recall, Value: 0.954225352112676, Name: Recall
- Type: f1, Value: 0.9489873178118493, Name: F1
- Type: accuracy, Value: 0.9917883014379933, Name: Accuracy