license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cynthiachan/FeedRef_10pct
model-index:
- name: training
results: []
training
This model is a fine-tuned version of bert-base-cased on the cynthiachan/FeedRef_10pct dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1291
- Attackid Precision: 1.0
- Attackid Recall: 1.0
- Attackid F1: 1.0
- Attackid Number: 6
- Cve Precision: 0.8333
- Cve Recall: 0.9091
- Cve F1: 0.8696
- Cve Number: 11
- Defenderthreat Precision: 0.0
- Defenderthreat Recall: 0.0
- Defenderthreat F1: 0.0
- Defenderthreat Number: 2
- Domain Precision: 0.7826
- Domain Recall: 0.7826
- Domain F1: 0.7826
- Domain Number: 23
- Email Precision: 0.6667
- Email Recall: 0.6667
- Email F1: 0.6667
- Email Number: 3
- Filepath Precision: 0.6766
- Filepath Recall: 0.8242
- Filepath F1: 0.7432
- Filepath Number: 165
- Hostname Precision: 1.0
- Hostname Recall: 0.9167
- Hostname F1: 0.9565
- Hostname Number: 12
- Ipv4 Precision: 0.8333
- Ipv4 Recall: 0.8333
- Ipv4 F1: 0.8333
- Ipv4 Number: 12
- Md5 Precision: 0.7246
- Md5 Recall: 0.9615
- Md5 F1: 0.8264
- Md5 Number: 52
- Sha1 Precision: 0.0667
- Sha1 Recall: 0.1429
- Sha1 F1: 0.0909
- Sha1 Number: 7
- Sha256 Precision: 0.6780
- Sha256 Recall: 0.9091
- Sha256 F1: 0.7767
- Sha256 Number: 44
- Uri Precision: 0.0
- Uri Recall: 0.0
- Uri F1: 0.0
- Uri Number: 1
- Overall Precision: 0.6910
- Overall Recall: 0.8402
- Overall F1: 0.7583
- Overall Accuracy: 0.9725
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Attackid Precision |
Attackid Recall |
Attackid F1 |
Attackid Number |
Cve Precision |
Cve Recall |
Cve F1 |
Cve Number |
Defenderthreat Precision |
Defenderthreat Recall |
Defenderthreat F1 |
Defenderthreat Number |
Domain Precision |
Domain Recall |
Domain F1 |
Domain Number |
Email Precision |
Email Recall |
Email F1 |
Email Number |
Filepath Precision |
Filepath Recall |
Filepath F1 |
Filepath Number |
Hostname Precision |
Hostname Recall |
Hostname F1 |
Hostname Number |
Ipv4 Precision |
Ipv4 Recall |
Ipv4 F1 |
Ipv4 Number |
Md5 Precision |
Md5 Recall |
Md5 F1 |
Md5 Number |
Sha1 Precision |
Sha1 Recall |
Sha1 F1 |
Sha1 Number |
Sha256 Precision |
Sha256 Recall |
Sha256 F1 |
Sha256 Number |
Uri Precision |
Uri Recall |
Uri F1 |
Uri Number |
Overall Precision |
Overall Recall |
Overall F1 |
Overall Accuracy |
0.3943 |
0.37 |
500 |
0.2881 |
0.0 |
0.0 |
0.0 |
6 |
0.0 |
0.0 |
0.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.0 |
0.0 |
0.0 |
23 |
0.0 |
0.0 |
0.0 |
3 |
0.1138 |
0.2 |
0.1451 |
165 |
0.0692 |
0.9167 |
0.1287 |
12 |
0.4706 |
0.6667 |
0.5517 |
12 |
0.75 |
0.9231 |
0.8276 |
52 |
0.0 |
0.0 |
0.0 |
7 |
0.5694 |
0.9318 |
0.7069 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.2342 |
0.4172 |
0.3 |
0.9360 |
0.1987 |
0.75 |
1000 |
0.1722 |
0.5 |
1.0 |
0.6667 |
6 |
1.0 |
1.0 |
1.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.0 |
0.0 |
0.0 |
23 |
0.0 |
0.0 |
0.0 |
3 |
0.4779 |
0.6545 |
0.5524 |
165 |
0.25 |
0.6667 |
0.3636 |
12 |
0.6923 |
0.75 |
0.7200 |
12 |
0.6364 |
0.9423 |
0.7597 |
52 |
0.0 |
0.0 |
0.0 |
7 |
0.6545 |
0.8182 |
0.7273 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.5136 |
0.6716 |
0.5821 |
0.9529 |
0.1595 |
1.12 |
1500 |
0.1346 |
0.8571 |
1.0 |
0.9231 |
6 |
1.0 |
1.0 |
1.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.4286 |
0.5217 |
0.4706 |
23 |
0.0 |
0.0 |
0.0 |
3 |
0.5797 |
0.7273 |
0.6452 |
165 |
0.44 |
0.9167 |
0.5946 |
12 |
0.3929 |
0.9167 |
0.55 |
12 |
0.6364 |
0.9423 |
0.7597 |
52 |
0.0 |
0.0 |
0.0 |
7 |
0.78 |
0.8864 |
0.8298 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.5768 |
0.7663 |
0.6582 |
0.9658 |
0.118 |
1.5 |
2000 |
0.1436 |
1.0 |
1.0 |
1.0 |
6 |
1.0 |
1.0 |
1.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.6087 |
0.6087 |
0.6087 |
23 |
0.0 |
0.0 |
0.0 |
3 |
0.6101 |
0.8061 |
0.6945 |
165 |
0.9091 |
0.8333 |
0.8696 |
12 |
0.7273 |
0.6667 |
0.6957 |
12 |
0.7869 |
0.9231 |
0.8496 |
52 |
0.2143 |
0.4286 |
0.2857 |
7 |
0.7407 |
0.9091 |
0.8163 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.6675 |
0.8077 |
0.7309 |
0.9686 |
0.1198 |
1.87 |
2500 |
0.1385 |
1.0 |
1.0 |
1.0 |
6 |
0.7692 |
0.9091 |
0.8333 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.85 |
0.7391 |
0.7907 |
23 |
0.0 |
0.0 |
0.0 |
3 |
0.6390 |
0.7939 |
0.7081 |
165 |
1.0 |
0.8333 |
0.9091 |
12 |
0.5333 |
0.6667 |
0.5926 |
12 |
0.7778 |
0.9423 |
0.8522 |
52 |
0.3333 |
0.5714 |
0.4211 |
7 |
0.8571 |
0.9545 |
0.9032 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.6995 |
0.8195 |
0.7548 |
0.9687 |
0.0742 |
2.25 |
3000 |
0.1291 |
1.0 |
1.0 |
1.0 |
6 |
0.8333 |
0.9091 |
0.8696 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.7826 |
0.7826 |
0.7826 |
23 |
0.6667 |
0.6667 |
0.6667 |
3 |
0.6766 |
0.8242 |
0.7432 |
165 |
1.0 |
0.9167 |
0.9565 |
12 |
0.8333 |
0.8333 |
0.8333 |
12 |
0.7246 |
0.9615 |
0.8264 |
52 |
0.0667 |
0.1429 |
0.0909 |
7 |
0.6780 |
0.9091 |
0.7767 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.6910 |
0.8402 |
0.7583 |
0.9725 |
0.0687 |
2.62 |
3500 |
0.1385 |
1.0 |
1.0 |
1.0 |
6 |
1.0 |
1.0 |
1.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.8077 |
0.9130 |
0.8571 |
23 |
1.0 |
1.0 |
1.0 |
3 |
0.7746 |
0.8121 |
0.7929 |
165 |
0.7333 |
0.9167 |
0.8148 |
12 |
0.7143 |
0.8333 |
0.7692 |
12 |
0.96 |
0.9231 |
0.9412 |
52 |
0.4444 |
0.5714 |
0.5 |
7 |
0.8113 |
0.9773 |
0.8866 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.8083 |
0.8609 |
0.8338 |
0.9737 |
0.0652 |
3.0 |
4000 |
0.1299 |
1.0 |
1.0 |
1.0 |
6 |
1.0 |
1.0 |
1.0 |
11 |
0.0 |
0.0 |
0.0 |
2 |
0.8077 |
0.9130 |
0.8571 |
23 |
1.0 |
1.0 |
1.0 |
3 |
0.7553 |
0.8606 |
0.8045 |
165 |
0.8462 |
0.9167 |
0.8800 |
12 |
0.7143 |
0.8333 |
0.7692 |
12 |
0.8571 |
0.9231 |
0.8889 |
52 |
0.75 |
0.8571 |
0.8000 |
7 |
0.8723 |
0.9318 |
0.9011 |
44 |
0.0 |
0.0 |
0.0 |
1 |
0.8038 |
0.8846 |
0.8423 |
0.9772 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1