Model Overview
Model Features
Model Capabilities
Use Cases
đ Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
Built with Llama, this model offers efficient text and image processing with optimized quantization techniques.
đ Quick Start
This model can be deployed efficiently using the vLLM backend. Here is an example:
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
number_gpus = 4
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
⨠Features
Model Overview
- Model Architecture: Llama4ForConditionalGeneration
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Activation quantization: FP8
- Weight quantization: FP8
- Release Date: 04/15/2025
- Version: 1.0
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of Llama-4-Scout-17B-16E-Instruct to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. The llm-compressor library is used for quantization.
đģ Usage Examples
Basic Usage
The basic usage of this model is demonstrated in the deployment example above.
Advanced Usage
The following code shows how to create the model with llm-compressor:
#!/usr/bin/env python3
"""
This script loads an LLM model and applies FP8 quantization to
weights and activations. Activations are dynamically quantized, i.e. during
actual runtime.
"""
import argparse
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, Llama4ForConditionalGeneration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor import oneshot
from compressed_tensors.quantization import (
QuantizationScheme,
QuantizationArgs,
QuantizationType,
QuantizationStrategy,
)
def parse_arguments():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description="Quantize a causal language model")
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the pre-trained model",
)
parser.add_argument(
"--quant_path",
type=str,
required=True,
help="Output path for the quantized model",
)
return parser.parse_args()
def main():
"""Main function to load and quantize the model."""
args = parse_arguments()
print(f"Loading model from {args.model_path}...")
model = Llama4ForConditionalGeneration.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
)
quant_scheme = QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(
num_bits=8,
type=QuantizationType.FLOAT,
strategy=QuantizationStrategy.CHANNEL,
symmetric=True,
observer="mse",
),
input_activations=QuantizationArgs(
num_bits=8,
type=QuantizationType.FLOAT,
strategy=QuantizationStrategy.TOKEN,
symmetric=True,
dynamic=True,
),
output_activations=None,
)
recipe = QuantizationModifier(
targets="Linear",
config_groups={"group_0": quant_scheme},
ignore=[
're:.*lm_head',
're:.*self_attn',
're:.*router',
're:.*vision_model',
're:.*multi_modal_projector',
]
)
print("Applying quantization...")
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
)
model.save_pretrained(args.quant_path, save_compressed=True, skip_compression_stats=True, disable_sparse_compression=True)
print(f"Quantized model saved to {args.quant_path}")
if __name__ == "__main__":
main()
đ Documentation
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA. All evaluations are obtained through lm-evaluation-harness.
Evaluation details
OpenLLM v1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--batch_size auto
Long Context RULER
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks ruler \
--metadata='{"max_seq_lengths":[131072]}' \
--batch_size auto
Multimodal MMMU
lm_eval \
--model vllm-vlm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
--tasks mmmu_val \
--apply_chat_template \
--batch_size auto
Multimodal ChartQA
export VLLM_MM_INPUT_CACHE_GIB=8
lm_eval \
--model vllm-vlm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
--tasks chartqa \
--apply_chat_template \
--batch_size auto
Accuracy
Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic (this model) |
|
---|---|---|---|
ARC-Challenge 25-shot |
100.36 | 69.37 | 69.62 |
GSM8k 5-shot |
99.24 | 90.45 | 89.76 |
HellaSwag 10-shot |
99.94 | 85.23 | 85.18 |
MMLU 5-shot |
99.94 | 80.54 | 80.49 |
TruthfulQA 0-shot |
99.17 | 61.41 | 60.90 |
WinoGrande 5-shot |
98.88 | 77.90 | 77.03 |
OpenLLM v1 Average Score |
99.59 | 77.48 | 77.16 |
IFEval 0-shot avg of inst and prompt acc |
100.91 | 86.90 | 87.69 |
Big Bench Hard 3-shot |
99.82 | 65.13 | 65.01 |
Math Lvl 5 4-shot |
98.82 | 57.78 | 57.10 |
GPQA 0-shot |
100.53 | 31.88 | 32.05 |
MuSR 0-shot |
102.18 | 42.20 | 43.12 |
MMLU-Pro 5-shot |
99.82 | 55.70 | 55.60 |
OpenLLM v2 Average Score |
100.28 | 56.60 | 56.76 |
RULER seqlen = 131072 niah_multikey_1 |
101.36 | 88.20 | 89.40 |
RULER seqlen = 131072 niah_multikey_2 |
100.72 | 83.60 | 84.20 |
RULER seqlen = 131072 niah_multikey_3 |
96.19 | 78.80 | 75.80 |
RULER seqlen = 131072 niah_multiquery |
100.79 | 95.40 | 96.15 |
RULER seqlen = 131072 niah_multivalue |
97.22 | 73.75 | 71.70 |
RULER seqlen = 131072 niah_single_1 |
100.00 | 100.00 | 100.00 |
RULER seqlen = 131072 niah_single_2 |
100.00 | 99.80 | 99.80 |
RULER seqlen = 131072 niah_single_3 |
100.00 | 99.80 | 99.80 |
RULER seqlen = 131072 ruler_cwe |
96.19 | 39.42 | 37.92 |
RULER seqlen = 131072 ruler_fwe |
98.86 | 92.93 | 91.87 |
RULER seqlen = 131072 ruler_qa_hotpot |
100.00 | 48.20 | 48.20 |
RULER seqlen = 131072 ruler_qa_squad |
98.81 | 53.57 | 52.93 |
RULER seqlen = 131072 ruler_qa_vt |
100.35 | 92.28 | 92.60 |
RULER seqlen = 131072 Average Score |
99.49 | 80.44 | 80.03 |
MMMU 0-shot |
97.92 | 53.44 | 52.33 |
ChartQA 0-shot exact_match |
100.12 | 65.88 | 65.96 |
ChartQA 0-shot relaxed_accuracy |
99.69 | 88.92 | 88.64 |
Multimodal Average Score | 99.38 | 69.41 | 68.98 |
đ License
The license for this model is under the "other" category, with the license name being "llama4".






