đ BeautifulPrompt-v2
We open-sourced an automatic Prompt generation model. You can directly input a very simple Prompt and get a Prompt optimized by the language model, which helps you generate high-quality images more easily. Compared with v1, we have improved the performance in complex scenarios and added the ability to generate weights (used with sd-webui).
đ Quick Start
We release an automatic Prompt generation model, you can directly enter an extremely simple Prompt and get a Prompt optimized by the language model to help you generate more beautiful images simply. Compared with v1, we have improved the performance in complex scenarios and increased the ability to generate weights (use with sd-webui).
đģ Usage Examples
Basic Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd-v2')
model = AutoModelForCausalLM.from_pretrained('alibaba-pai/pai-bloom-1b1-text2prompt-sd-v2').eval().cuda()
raw_prompt = '1 girl'
TEMPLATE_V2 = 'Converts a simple image description into a prompt. \
Prompts are formatted as multiple related tags separated by commas, plus you can use () to increase the weight, [] to decrease the weight, \
or use a number to specify the weight. You should add appropriate words to make the images described in the prompt more aesthetically pleasing, \
but make sure there is a correlation between the input and output.\n\
### Input: {raw_prompt}\n### Output:'
input = TEMPLATE_V2.format(raw_prompt=raw_prompt)
input_ids = tokenizer.encode(input, return_tensors='pt').cuda()
outputs = model.generate(
input_ids,
max_new_tokens=384,
do_sample=True,
temperature=0.9,
top_k=50,
top_p=0.95,
repetition_penalty=1.1,
num_return_sequences=5)
prompts = tokenizer.batch_decode(outputs[:, input_ids.size(1):], skip_special_tokens=True)
prompts = [p.strip() for p in prompts]
print(prompts)
đ Documentation
Gallery
Before |
After |
prompt: a beautiful girl |
prompt: (8k, RAW photo, best quality, masterpiece:1.2), (realistic, photo-realistic:1.37), octane render, ultra high res, photon mapping, radiosity, physically-based rendering, ue5, ((white dress)), ((long hair)), ((beautiful face)), ((light brown eyes)), ((smile))) extremely detailed CG unity 8k wallpaper, makeup, (glowing lips), (fantasy lining), (intricate details), light bokeh, (sharp focus) centered at the center of the face (wide angle:0.6), full body |
 |
 |
Before |
After |
prompt: Astronaut rides horse |
prompt: (masterpiece), (best quality), astronaut on horseback, (rides horse), ( helmet ), (standing on horseback), panorama, looking ahead, detailed background, solo |
 |
 |
generated by sd-xl-1.0
Notice for Use
If you want to use this model, please read this document carefully and abide by the terms.
Paper Citation
If you find the model useful, please consider cite the paper:
@inproceedings{emnlp2023a,
author = {Tingfeng Cao and
Chengyu Wang and
Bingyan Liu and
Ziheng Wu and
Jinhui Zhu and
Jun Huang},
title = {BeautifulPrompt: Towards Automatic Prompt Engineering for Text-to-Image Synthesis},
booktitle = {Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track},
pages = {1--11},
year = {2023}
}
đ License
This project is licensed under the Apache-2.0 license.