đ AI and Human Image Classification Model
A fine - tuned model trained on 60,000 AI - generated and 60,000 human images. It can effectively detect high - quality, state - of - the - art AI - generated images from popular models like Midjourney v6.1, Flux 1.1 Pro, Stable Diffusion 3.5, GPT - 4o, etc.
Detailed Training Code is available here: [blog/ai/fine - tuning - siglip2](https://exnrt.com/blog/ai/fine - tuning - siglip2/)
đ Quick Start
đĻ Installation
pip install -q transformers torch Pillow accelerate
đģ Usage Examples
đ Basic Usage
import torch
from PIL import Image as PILImage
from transformers import AutoImageProcessor, SiglipForImageClassification
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
try:
print(f"Loading processor from: {MODEL_IDENTIFIER}")
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
print(f"Loading model from: {MODEL_IDENTIFIER}")
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
model.to(device)
model.eval()
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading model or processor: {e}")
exit()
IMAGE_PATH = r"/content/images.jpg"
try:
print(f"Loading image: {IMAGE_PATH}")
image = PILImage.open(IMAGE_PATH).convert("RGB")
except FileNotFoundError:
print(f"Error: Image file not found at {IMAGE_PATH}")
exit()
except Exception as e:
print(f"Error opening image: {e}")
exit()
print("Preprocessing image...")
inputs = processor(images=image, return_tensors="pt").to(device)
print("Running inference...")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
probabilities = torch.softmax(logits, dim=-1)
predicted_prob = probabilities[0, predicted_class_idx].item()
print("-" * 30)
print(f"Image: {IMAGE_PATH}")
print(f"Predicted Label: {predicted_label}")
print(f"Confidence Score: {predicted_prob:.4f}")
print("-" * 30)
print("Scores per class:")
for i, label in model.config.id2label.items():
print(f" - {label}: {probabilities[0, i].item():.4f}")
đ Output
Using device: cpu
Model and processor loaded successfully.
Loading image: /content/images.jpg
Preprocessing image...
Running inference...
------------------------------
Image: /content/images.jpg
Predicted Label: ai
Confidence Score: 0.9996
------------------------------
Scores per class:
- ai: 0.9996
- hum: 0.0004
đ Documentation
đ Evaluation Metrics

đī¸ââī¸ Train Metrics
- Epoch: 5.0
- Total FLOPs: 51,652,280,821 GF
- Train Loss: 0.0799
- Train Runtime: 2:39:49.46
- Train Samples/Sec: 69.053
- Train Steps/Sec: 4.316
đ Evaluation Metrics (Fine - Tuned Model on Test Set)
- Epoch: 5.0
- Eval Accuracy: 0.9923
- Eval Loss: 0.0551
- Eval Runtime: 0:02:35.78
- Eval Samples/Sec: 212.533
- Eval Steps/Sec: 6.644
đĻ Prediction Metrics (on test set):
{
"test_loss": 0.05508904904127121,
"test_accuracy": 0.9923283699296264,
"test_runtime": 167.1844,
"test_samples_per_second": 198.039,
"test_steps_per_second": 6.191
}
- Final Test Accuracy: 0.9923
- Final Test F1 Score (Macro): 0.9923
- Final Test F1 Score (Weighted): 0.9923
đ License
This project is licensed under the Apache - 2.0 license.