🚀 AI与人类图像分类模型
本项目是一个经过微调的图像分类模型,在60,000张AI生成图像和60,000张人类图像上进行训练。该模型能够出色地检测出由Midjourney v6.1、Flux 1.1 Pro、Stable Diffusion 3.5、GPT - 4o等前沿AI模型生成的高质量图像。
详细的训练代码可查看:blog/ai/fine - tuning - siglip2
🚀 快速开始
安装依赖
pip install -q transformers torch Pillow accelerate
代码示例
import torch
from PIL import Image as PILImage
from transformers import AutoImageProcessor, SiglipForImageClassification
MODEL_IDENTIFIER = r"Ateeqq/ai-vs-human-image-detector"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
try:
print(f"Loading processor from: {MODEL_IDENTIFIER}")
processor = AutoImageProcessor.from_pretrained(MODEL_IDENTIFIER)
print(f"Loading model from: {MODEL_IDENTIFIER}")
model = SiglipForImageClassification.from_pretrained(MODEL_IDENTIFIER)
model.to(device)
model.eval()
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading model or processor: {e}")
exit()
IMAGE_PATH = r"/content/images.jpg"
try:
print(f"Loading image: {IMAGE_PATH}")
image = PILImage.open(IMAGE_PATH).convert("RGB")
except FileNotFoundError:
print(f"Error: Image file not found at {IMAGE_PATH}")
exit()
except Exception as e:
print(f"Error opening image: {e}")
exit()
print("Preprocessing image...")
inputs = processor(images=image, return_tensors="pt").to(device)
print("Running inference...")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
probabilities = torch.softmax(logits, dim=-1)
predicted_prob = probabilities[0, predicted_class_idx].item()
print("-" * 30)
print(f"Image: {IMAGE_PATH}")
print(f"Predicted Label: {predicted_label}")
print(f"Confidence Score: {predicted_prob:.4f}")
print("-" * 30)
print("Scores per class:")
for i, label in model.config.id2label.items():
print(f" - {label}: {probabilities[0, i].item():.4f}")
输出示例
Using device: cpu
Model and processor loaded successfully.
Loading image: /content/images.jpg
Preprocessing image...
Running inference...
------------------------------
Image: /content/images.jpg
Predicted Label: ai
Confidence Score: 0.9996
------------------------------
Scores per class:
- ai: 0.9996
- hum: 0.0004
✨ 主要特性
- 强大的检测能力:能够有效识别多种前沿AI模型生成的高质量图像。
- 高准确率:在测试集上取得了高达0.9923的准确率。
📚 详细文档
评估指标

🏋️♂️ 训练指标
- Epoch:5.0
- 总浮点运算次数(Total FLOPs):51,652,280,821 GF
- 训练损失(Train Loss):0.0799
- 训练运行时间(Train Runtime):2:39:49.46
- 训练样本每秒处理数(Train Samples/Sec):69.053
- 训练步骤每秒处理数(Train Steps/Sec):4.316
📊 评估指标(微调模型在测试集上)
- Epoch:5.0
- 评估准确率(Eval Accuracy):0.9923
- 评估损失(Eval Loss):0.0551
- 评估运行时间(Eval Runtime):0:02:35.78
- 评估样本每秒处理数(Eval Samples/Sec):212.533
- 评估步骤每秒处理数(Eval Steps/Sec):6.644
🔦 预测指标(在测试集上)
{
"test_loss": 0.05508904904127121,
"test_accuracy": 0.9923283699296264,
"test_runtime": 167.1844,
"test_samples_per_second": 198.039,
"test_steps_per_second": 6.191
}
- 最终测试准确率:0.9923
- 最终测试F1分数(Macro):0.9923
- 最终测试F1分数(Weighted):0.9923
📄 许可证
本项目采用Apache - 2.0许可证。