đ Llama 3.2 400M Amharic
This is a smaller version of Meta's Llama-3.2-1B decoder transformer model. It's pretrained from scratch for 23 hours using a single A100 40GB GPU and 274 million tokens of Amharic text, offering a cost - effective solution for Amharic text processing.
đ Quick Start
This is a smaller version of the Meta's Llama-3.2-1B decoder transformer model. It was pretrained from scratch for 23 hours using a single A100 40GB GPU and 274 million tokens of Amharic text.
- It has 400 Million parameters.
- The context size of this model is 1024 tokens.
- It uses the same tokenizer as Llama - 3.2 - 1B, which was trained from scratch using the same Amharic dataset as the model, with a vocabulary size of 32k.
- Validation Perplexity: 41.3
- This is a base model and hasn't undergone any supervised finetuning yet.
đĻ Installation
First, you need to install the latest version of transformers
pip install -Uq transformers
đģ Usage Examples
Basic Usage
You can use this model directly with a pipeline for text generation:
from transformers import pipeline
llama_am = pipeline(
"text-generation",
model="rasyosef/Llama-3.2-400M-Amharic",
device_map="auto"
)
prompt = "á á˛áĩ á á áŖ"
llama_am(
prompt,
max_new_tokens=128,
temperature=0.5,
do_sample=True,
top_k=8,
top_p=0.8,
repetition_penalty=1.2
)
Output:
[{'generated_text': 'á á˛áĩ á á áŖáŖ áŗá
áŗáĩ 8 áŖ2012 (á¤á áĸ á˛) á¨áĸáá´áĒ á¨áá ááŗá áááĩáĩá á áļ ááą á ááŗááá¸á á¨á ááĒáĢ á
áĨá¨áĩ á¨áĩáĢ á áĩááģáááŊ ááá á¤áĩ áá°á á áĩáĨá°áŖ áá ááá á¨á´áááĢá˛á áĒááĨáá áŽáá á áģá¸á ááĒ áąááŖ ááá áĨá á¨áááŊ á¨á ááĒáĢ á ááŖáŗá°áŽáŊ áá á°ááĢáá°áááĸá ááááŗá¸áá á á ááĒáĢ á¨áŽáŽá áĢáá¨áĩá ááá¨áá¨á áĨá¨á°á¨ááá áŖá áĩáĢááŊ ááĒáĢ ááá¨áĢá¸áá á áĩáá°á ááģá¸á á áĩáá¨áááĸá¨áááąá áááĢáĩ áááááĩ á á°ááá¨á°ááĨ áĸáĩáŽáĩáĢ á á
áĨá¨áą áá á ááŖáŗá°áááĩ áŖááĩ áááááĩ áášááĩ áá
á¨áĨá á¨áá°áá
ááááá á ááĩá°áááĸáĸáĩáŽáĩáĢ á¨áŽáĒáĩ19 áá¨ááŊáá ááááŗáĩ áĨáĢá°á¨ááŊ áŖáá áĨá¨áĩ áá°áĄáĨ á ááĒáĢ ááĩáá á á
ááŖá áá áᤠáĢáá¨áąá ááááŖá á á¨áĸáĩáŽáĩáĢ áá áĨáá°ááĩáá á áááá ááá¨áĨááá¸á áĨáĢáá áá°ááĩ á áá°áŠ á¨áĩáĨáĨá ááĩáŽáŊ áá á°áááá¨á ááĩáĢáĩ áĨáááááá áĨááááĸá ááŖáá áááą'}]
Property |
Details |
Model Type |
Decoder Transformer |
Training Data |
274 million tokens of Amharic text |
Parameters |
400 Million |
Context Size |
1024 tokens |
Tokenizer Vocabulary Size |
32k |
Validation Perplexity |
41.3 |
Fine - tuning Status |
Not yet supervised finetuned |