Beit Base Image Orientation Fixer
Image orientation correction model based on SwinV2 architecture for automatic detection and correction of image orientation
Downloads 548
Release Time : 9/1/2024
Model Overview
This model is a fine-tuned image orientation corrector based on the SwinV2 architecture, capable of automatically identifying and correcting incorrect image orientations, achieving an F1 score of 0.9391 on the evaluation set.
Model Features
High-precision Orientation Recognition
Achieves an F1 score of 0.9391 on the evaluation set, accurately identifying image orientation
Based on SwinV2 Architecture
Utilizes the advanced Swin Transformer V2 architecture with excellent visual feature extraction capabilities
Efficient Processing Capability
Supports input resolution of 256x256 pixels, efficiently processing medium-sized images
Model Capabilities
Image Orientation Detection
Automatic Image Rotation
Image Orientation Classification
Use Cases
Image Processing
Automatic Correction of User-uploaded Images
Automatically detects and corrects the orientation of user-uploaded images, improving user experience
Reduces orientation errors in images by over 90%
Image Database Organization
Batch processing of incorrectly oriented images in an image database
Improves image retrieval and browsing efficiency
đ SwinV2-Base-Image-Orientation-Fixer
This model is a fine - tuned version of [microsoft/swinv2 - base - patch4 - window16 - 256](https://huggingface.co/microsoft/swinv2 - base - patch4 - window16 - 256) on the None dataset. It can be used to fix image orientation, achieving high accuracy on the evaluation set.
đ Quick Start
This model is a fine - tuned version of [microsoft/swinv2 - base - patch4 - window16 - 256](https://huggingface.co/microsoft/swinv2 - base - patch4 - window16 - 256) on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1295
- F1: 0.9391
⨠Features
- Fine - tuned Model: Based on the pre - trained
microsoft/swinv2 - base - patch4 - window16 - 256
, it is fine - tuned for image orientation fixing. - High Performance: Achieves a low loss of 0.1295 and a high F1 score of 0.9391 on the evaluation set.
đ§ Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.3053 | 0.001 | 10 | 1.1901 | 0.2711 |
1.1711 | 0.002 | 20 | 1.1128 | 0.2697 |
1.1158 | 0.003 | 30 | 1.0354 | 0.3505 |
1.0164 | 0.004 | 40 | 0.9894 | 0.3356 |
1.0899 | 0.005 | 50 | 0.9472 | 0.3613 |
0.9108 | 0.006 | 60 | 0.9176 | 0.4340 |
0.9161 | 0.007 | 70 | 0.9004 | 0.3447 |
0.8827 | 0.008 | 80 | 0.8459 | 0.5296 |
0.9068 | 0.009 | 90 | 0.7963 | 0.5104 |
0.8606 | 0.01 | 100 | 0.7538 | 0.5552 |
0.815 | 0.011 | 110 | 0.7165 | 0.5863 |
0.758 | 0.012 | 120 | 0.6884 | 0.5611 |
0.7998 | 0.013 | 130 | 0.6822 | 0.6414 |
0.8375 | 0.014 | 140 | 0.6660 | 0.5511 |
0.7375 | 0.015 | 150 | 0.6145 | 0.6981 |
0.6883 | 0.016 | 160 | 0.5882 | 0.6456 |
0.6961 | 0.017 | 170 | 0.5733 | 0.6803 |
0.575 | 0.018 | 180 | 0.5161 | 0.7218 |
0.4773 | 0.019 | 190 | 0.6457 | 0.6837 |
0.6862 | 0.02 | 200 | 0.5336 | 0.7211 |
0.5798 | 0.021 | 210 | 0.4840 | 0.7517 |
0.5621 | 0.022 | 220 | 0.4435 | 0.7674 |
0.475 | 0.023 | 230 | 0.4663 | 0.7113 |
0.6144 | 0.024 | 240 | 0.5058 | 0.6841 |
0.5164 | 0.025 | 250 | 0.4790 | 0.7295 |
0.524 | 0.026 | 260 | 0.4770 | 0.6971 |
0.5406 | 0.027 | 270 | 0.4121 | 0.7509 |
0.4378 | 0.028 | 280 | 0.4170 | 0.7875 |
0.5211 | 0.029 | 290 | 0.4221 | 0.7851 |
0.4258 | 0.03 | 300 | 0.3769 | 0.7990 |
0.4177 | 0.031 | 310 | 0.3696 | 0.8143 |
0.4183 | 0.032 | 320 | 0.3798 | 0.8072 |
0.487 | 0.033 | 330 | 0.4113 | 0.8098 |
0.3602 | 0.034 | 340 | 0.3808 | 0.8059 |
0.4247 | 0.035 | 350 | 0.3768 | 0.8271 |
0.4483 | 0.036 | 360 | 0.3503 | 0.7964 |
0.3606 | 0.037 | 370 | 0.3605 | 0.8314 |
0.3878 | 0.038 | 380 | 0.3359 | 0.8390 |
0.4085 | 0.039 | 390 | 0.2981 | 0.8606 |
0.3672 | 0.04 | 400 | 0.3072 | 0.8511 |
0.3539 | 0.041 | 410 | 0.3090 | 0.8481 |
0.4045 | 0.042 | 420 | 0.3052 | 0.8555 |
0.403 | 0.043 | 430 | 0.3610 | 0.8221 |
0.3892 | 0.044 | 440 | 0.3189 | 0.8396 |
0.4989 | 0.045 | 450 | 0.3337 | 0.8287 |
0.3922 | 0.046 | 460 | 0.3019 | 0.8540 |
0.3794 | 0.047 | 470 | 0.3157 | 0.8476 |
0.4158 | 0.048 | 480 | 0.3050 | 0.8553 |
0.3367 | 0.049 | 490 | 0.2884 | 0.8615 |
0.3991 | 0.05 | 500 | 0.3451 | 0.8407 |
0.411 | 0.051 | 510 | 0.2762 | 0.8623 |
0.2855 | 0.052 | 520 | 0.2766 | 0.8701 |
0.4612 | 0.053 | 530 | 0.2799 | 0.8712 |
0.4118 | 0.054 | 540 | 0.3085 | 0.8511 |
0.2906 | 0.055 | 550 | 0.2841 | 0.8759 |
0.3242 | 0.056 | 560 | 0.2719 | 0.8823 |
0.3575 | 0.057 | 570 | 0.3384 | 0.8561 |
0.3562 | 0.058 | 580 | 0.2722 | 0.8791 |
0.3944 | 0.059 | 590 | 0.3507 | 0.8465 |
0.3175 | 0.06 | 600 | 0.2901 | 0.8668 |
0.3608 | 0.061 | 610 | 0.2902 | 0.8660 |
0.2619 | 0.062 | 620 | 0.3373 | 0.8543 |
0.3243 | 0.063 | 630 | 0.2703 | 0.8884 |
0.361 | 0.064 | 640 | 0.2891 | 0.8662 |
0.3267 | 0.065 | 650 | 0.2739 | 0.8784 |
0.261 | 0.066 | 660 | 0.2602 | 0.8747 |
0.2521 | 0.067 | 670 | 0.2641 | 0.8883 |
0.391 | 0.068 | 680 | 0.2589 | 0.8870 |
0.3604 | 0.069 | 690 | 0.2622 | 0.8903 |
0.2983 | 0.07 | 700 | 0.2528 | 0.8846 |
0.2521 | 0.071 | 710 | 0.2571 | 0.8916 |
0.4368 | 0.072 | 720 | 0.2839 | 0.8877 |
0.3208 | 0.073 | 730 | 0.2898 | 0.8742 |
0.2887 | 0.074 | 740 | 0.2700 | 0.8839 |
0.3075 | 0.075 | 750 | 0.2707 | 0.8770 |
0.3465 | 0.076 | 760 | 0.2828 | 0.8695 |
0.2863 | 0.077 | 770 | 0.2874 | 0.8823 |
0.3402 | 0.078 | 780 | 0.2782 | 0.8781 |
0.3495 | 0.079 | 790 | 0.2538 | 0.8929 |
0.3177 | 0.08 | 800 | 0.2437 | 0.8779 |
0.3012 | 0.081 | 810 | 0.2865 | 0.8837 |
0.4079 | 0.082 | 820 | 0.2573 | 0.8830 |
0.2915 | 0.083 | 830 | 0.3135 | 0.8707 |
0.2407 | 0.084 | 840 | 0.2804 | 0.8844 |
0.2574 | 0.085 | 850 | 0.2810 | 0.8713 |
0.3141 | 0.086 | 860 | 0.2827 | 0.8802 |
0.2601 | 0.087 | 870 | 0.3076 | 0.8693 |
0.3462 | 0.088 | 880 | 0.2588 | 0.8714 |
0.3356 | 0.089 | 890 | 0.2677 | 0.8761 |
0.3135 | 0.09 | 900 | 0.2715 | 0.8740 |
0.369 | 0.091 | 910 | 0.2674 | 0.8705 |
0.2866 | 0.092 | 920 | 0.2617 | 0.8827 |
0.251 | 0.093 | 930 | 0.2483 | 0.8894 |
0.1822 | 0.094 | 940 | 0.2679 | 0.8817 |
0.2569 | 0.095 | 950 | 0.2810 | 0.8847 |
0.3046 | 0.096 | 960 | 0.2774 | 0.8773 |
0.2099 | 0.097 | 970 | 0.2738 | 0.8715 |
0.2961 | 0.098 | 980 | 0.2603 | 0.8860 |
0.2724 | 0.099 | 990 | 0.2661 | 0.8813 |
0.3179 | 0.1 | 1000 | 0.2414 | 0.8837 |
0.3635 | 0.101 | 1010 | 0.2433 | 0.8916 |
0.2815 | 0.102 | 1020 | 0.2562 | 0.8784 |
0.2758 | 0.103 | 1030 | 0.2358 | 0.8941 |
0.2664 | 0.104 | 1040 | 0.2571 | 0.8919 |
0.2584 | 0.105 | 1050 | 0.2617 | 0.8758 |
0.3165 | 0.106 | 1060 | 0.2690 | 0.8834 |
0.2877 | 0.107 | 1070 | 0.2362 | 0.8926 |
0.2713 | 0.108 | 1080 | 0.2416 | 0.8905 |
0.2598 | 0.109 | 1090 | 0.2525 | 0.8806 |
0.2796 | 0.11 | 1100 | 0.2433 | 0.8950 |
0.2558 | 0.111 | 1110 | 0.2562 | 0.8930 |
0.2443 | 0.112 | 1120 | 0.2714 | 0.8838 |
0.3383 | 0.113 | 1130 | 0.2387 | 0.8971 |
0.2636 | 0.114 | 1140 | 0.2721 | 0.8673 |
0.2851 | 0.115 | 1150 | 0.2459 | 0.8830 |
0.2072 | 0.116 | 1160 | 0.2309 | 0.8929 |
0.2331 | 0.117 | 1170 | 0.2942 | 0.8835 |
0.2361 | 0.118 | 1180 | 0.2517 | 0.8958 |
0.3166 | 0.119 | 1190 | 0.2590 | 0.8947 |
0.2891 | 0.12 | 1200 | 0.2725 | 0.8787 |
0.3136 | 0.121 | 1210 | 0.2321 | 0.8969 |
0.2569 | 0.122 | 1220 | 0.2489 | 0.8929 |
0.262 | 0.123 | 1230 | 0.2493 | 0.8869 |
0.311 | 0.124 | 1240 | 0.2285 | 0.8996 |
0.2848 | 0.125 | 1250 | 0.2407 | 0.8877 |
0.2321 | 0.126 | 1260 | 0.2276 | 0.8887 |
0.2398 | 0.127 | 1270 | 0.2598 | 0.8879 |
0.2399 | 0.128 | 1280 | 0.2331 | 0.8850 |
0.3352 | 0.129 | 1290 | 0.2384 | 0.8908 |
0.3042 | 0.13 | 1300 | 0.2161 | 0.9016 |
0.22 | 0.131 | 1310 | 0.2493 | 0.8815 |
0.2821 | 0.132 | 1320 | 0.2159 | 0.8989 |
0.2903 | 0.133 | 1330 | 0.2258 | 0.8990 |
0.3207 | 0.134 | 1340 | 0.2223 | 0.9039 |
0.204 | 0.135 | 1350 | 0.2109 | 0.9000 |
0.2346 | 0.136 | 1360 | 0.2305 | 0.8923 |
0.2775 | 0.137 | 1370 | 0.2150 | 0.9013 |
0.2689 | 0.138 | 1380 | 0.2313 | 0.9031 |
0.2346 | 0.139 | 1390 | 0.2181 | 0.9017 |
0.2454 | 0.14 | 1400 | 0.2273 | 0.9002 |
0.2867 | 0.141 | 1410 | 0.2218 | 0.8954 |
0.3079 | 0.142 | 1420 | 0.2302 | 0.8858 |
0.2169 | 0.143 | 1430 | 0.2588 | 0.8806 |
0.3228 | 0.144 | 1440 | 0.2274 | 0.8998 |
0.3602 | 0.145 | 1450 | 0.2293 | 0.8955 |
0.2999 | 0.146 | 1460 | 0.2218 | 0.8977 |
0.2667 | 0.147 | 1470 | 0.2312 | 0.8941 |
0.2569 | 0.148 | 1480 | 0.2269 | 0.8991 |
0.1956 | 0.149 | 1490 | 0.2411 | 0.8928 |
0.3543 | 0.15 | 1500 | 0.2184 | 0.8998 |
0.2969 | 0.151 | 1510 | 0.2328 | 0.8989 |
0.297 | 0.152 | 1520 | 0.2190 | 0.9038 |
0.258 | 0.153 | 1530 | 0.2292 | 0.9037 |
0.2046 | 0.154 | 1540 | 0.2245 | 0.8946 |
0.224 | 0.155 | 1550 | 0.2213 | 0.9004 |
0.2647 | 0.156 | 1560 | 0.2498 | 0.8844 |
0.2191 | 0.157 | 1570 | 0.2382 | 0.9008 |
0.2515 | 0.158 | 1580 | 0.2387 | 0.8952 |
0.2661 | 0.159 | 1590 | 0.2342 | 0.8864 |
0.2301 | 0.16 | 1600 | 0.2692 | 0.8745 |
0.2119 | 0.161 | 1610 | 0.2365 | 0.8897 |
0.1666 | 0.162 | 1620 | 0.2417 | 0.8896 |
0.2507 | 0.163 | 1630 | 0.2416 | 0.8873 |
0.2006 | 0.164 | 1640 | 0.2659 | 0.8839 |
0.1649 | 0.165 | 1650 | 0.2301 | 0.8972 |
0.2099 | 0.166 | 1660 | 0.2514 | 0.8956 |
0.3191 | 0.167 | 1670 | 0.2337 | 0.8846 |
0.2718 | 0.168 | 1680 | 0.2297 | 0.9123 |
0.2827 | 0.169 | 1690 | 0.2338 | 0.8931 |
0.2433 | 0.17 | 1700 | 0.2308 | 0.8927 |
0.2719 | 0.171 | 1710 | 0.2331 | 0.8946 |
0.2151 | 0.172 | 1720 | 0.2131 | 0.9052 |
0.2758 | 0.173 | 1730 | 0.2272 | 0.8989 |
0.3078 | 0.174 | 1740 | 0.2180 | 0.9072 |
0.3012 | 0.175 | 1750 | 0.2258 | 0.9034 |
0.3162 | 0.176 | 1760 | 0.2213 | 0.9057 |
0.2551 | 0.177 | 1770 | 0.2595 | 0.8818 |
0.2563 | 0.178 | 1780 | 0.2230 | 0.8973 |
0.2825 | 0.179 | 1790 | 0.2222 | 0.8957 |
0.1916 | 0.18 | 1800 | 0.2307 | 0.8981 |
0.2145 | 0.181 | 1810 | 0.2285 | 0.8975 |
0.2029 | 0.182 | 1820 | 0.2357 | 0.9003 |
0.1559 | 0.183 | 1830 | 0.2645 | 0.8880 |
0.3173 | 0.184 | 1840 | 0.2209 | 0.8992 |
0.2343 | 0.185 | 1850 | 0.2334 | 0.9043 |
0.233 | 0.186 | 1860 | 0.2241 | 0.9025 |
0.2697 | 0.187 | 1870 | 0.2150 | 0.8991 |
0.3023 | 0.188 | 1880 | 0.2312 | 0.8976 |
0.2052 | 0.189 | 1890 | 0.2053 | 0.8975 |
0.2601 | 0.19 | 1900 | 0.2042 | 0.8974 |
0.2966 | 0.191 | 1910 | 0.2142 | 0.8971 |
0.2338 | 0.192 | 1920 |
đ License
This model is licensed under the apache - 2.0
license.
Nsfw Image Detection
Apache-2.0
An NSFW image classification model based on the ViT architecture, pre-trained on ImageNet-21k via supervised learning and fine-tuned on 80,000 images to distinguish between normal and NSFW content.
Image Classification
Transformers

N
Falconsai
82.4M
588
Fairface Age Image Detection
Apache-2.0
An image classification model based on Vision Transformer architecture, pre-trained on the ImageNet-21k dataset, suitable for multi-category image classification tasks
Image Classification
Transformers

F
dima806
76.6M
10
Dinov2 Small
Apache-2.0
A small-scale vision Transformer model trained using the DINOv2 method, extracting image features through self-supervised learning
Image Classification
Transformers

D
facebook
5.0M
31
Vit Base Patch16 224
Apache-2.0
Vision Transformer model pre-trained on ImageNet-21k and fine-tuned on ImageNet for image classification tasks
Image Classification
V
google
4.8M
775
Vit Base Patch16 224 In21k
Apache-2.0
A Vision Transformer model pretrained on the ImageNet-21k dataset for image classification tasks.
Image Classification
V
google
2.2M
323
Dinov2 Base
Apache-2.0
Vision Transformer model trained using the DINOv2 method, extracting image features through self-supervised learning
Image Classification
Transformers

D
facebook
1.9M
126
Gender Classification
An image classification model built with PyTorch and HuggingPics for recognizing gender in images
Image Classification
Transformers

G
rizvandwiki
1.8M
48
Vit Base Nsfw Detector
Apache-2.0
An image classification model based on Vision Transformer (ViT) architecture, specifically designed to detect whether images contain NSFW (Not Safe For Work) content.
Image Classification
Transformers

V
AdamCodd
1.2M
47
Vit Hybrid Base Bit 384
Apache-2.0
The Hybrid Vision Transformer (ViT) model combines convolutional networks and Transformer architectures for image classification tasks, excelling on ImageNet.
Image Classification
Transformers

V
google
992.28k
6
Gender Classification 2
This is an image classification model based on the PyTorch framework and generated using HuggingPics tools, specifically designed for gender classification tasks.
Image Classification
Transformers

G
rizvandwiki
906.98k
32
Featured Recommended AI Models
Š 2025AIbase