đ exper_batch_16_e8
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the sudo - s/herbier_mesuem1 dataset. It offers significant value in image - classification tasks by leveraging the pre - trained features of the base model and adapting them to the specific dataset.
đ Quick Start
This model is a fine - tuned version of [google/vit - base - patch16 - 224 - in21k](https://huggingface.co/google/vit - base - patch16 - 224 - in21k) on the sudo - s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3951
- Accuracy: 0.9129
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Apex, opt level O1
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
3.8115 |
0.16 |
100 |
3.7948 |
0.1862 |
3.1194 |
0.31 |
200 |
3.0120 |
0.3281 |
2.3703 |
0.47 |
300 |
2.4791 |
0.4426 |
2.07 |
0.63 |
400 |
2.1720 |
0.5 |
1.6847 |
0.78 |
500 |
1.7291 |
0.5956 |
1.3821 |
0.94 |
600 |
1.4777 |
0.6299 |
0.9498 |
1.1 |
700 |
1.2935 |
0.6681 |
0.8741 |
1.25 |
800 |
1.1353 |
0.7051 |
0.8875 |
1.41 |
900 |
0.9951 |
0.7448 |
0.7233 |
1.56 |
1000 |
0.9265 |
0.7487 |
0.6696 |
1.72 |
1100 |
0.8660 |
0.7625 |
0.7364 |
1.88 |
1200 |
0.8710 |
0.7579 |
0.3933 |
2.03 |
1300 |
0.7162 |
0.8038 |
0.3443 |
2.19 |
1400 |
0.6305 |
0.8300 |
0.3376 |
2.35 |
1500 |
0.6273 |
0.8315 |
0.3071 |
2.5 |
1600 |
0.5988 |
0.8319 |
0.2863 |
2.66 |
1700 |
0.6731 |
0.8153 |
0.3017 |
2.82 |
1800 |
0.6042 |
0.8315 |
0.2382 |
2.97 |
1900 |
0.5118 |
0.8712 |
0.1578 |
3.13 |
2000 |
0.4917 |
0.8736 |
0.1794 |
3.29 |
2100 |
0.5302 |
0.8631 |
0.1093 |
3.44 |
2200 |
0.5035 |
0.8635 |
0.1076 |
3.6 |
2300 |
0.5186 |
0.8674 |
0.1219 |
3.76 |
2400 |
0.4723 |
0.8801 |
0.1017 |
3.91 |
2500 |
0.5132 |
0.8712 |
0.0351 |
4.07 |
2600 |
0.4709 |
0.8728 |
0.0295 |
4.23 |
2700 |
0.4674 |
0.8824 |
0.0416 |
4.38 |
2800 |
0.4836 |
0.8805 |
0.0386 |
4.54 |
2900 |
0.4663 |
0.8828 |
0.0392 |
4.69 |
3000 |
0.4003 |
0.8990 |
0.0383 |
4.85 |
3100 |
0.4187 |
0.8948 |
0.0624 |
5.01 |
3200 |
0.4460 |
0.8874 |
0.0188 |
5.16 |
3300 |
0.4169 |
0.9029 |
0.0174 |
5.32 |
3400 |
0.4098 |
0.8951 |
0.0257 |
5.48 |
3500 |
0.4289 |
0.8951 |
0.0123 |
5.63 |
3600 |
0.4295 |
0.9029 |
0.0052 |
5.79 |
3700 |
0.4395 |
0.8994 |
0.0081 |
5.95 |
3800 |
0.4217 |
0.9082 |
0.0032 |
6.1 |
3900 |
0.4216 |
0.9056 |
0.0033 |
6.26 |
4000 |
0.4113 |
0.9082 |
0.0024 |
6.42 |
4100 |
0.4060 |
0.9102 |
0.0022 |
6.57 |
4200 |
0.4067 |
0.9090 |
0.0031 |
6.73 |
4300 |
0.4005 |
0.9113 |
0.0021 |
6.89 |
4400 |
0.4008 |
0.9129 |
0.0021 |
7.04 |
4500 |
0.3967 |
0.9113 |
0.0043 |
7.2 |
4600 |
0.3960 |
0.9121 |
0.0022 |
7.36 |
4700 |
0.3962 |
0.9125 |
0.0021 |
7.51 |
4800 |
0.3992 |
0.9121 |
0.002 |
7.67 |
4900 |
0.3951 |
0.9129 |
0.0023 |
7.82 |
5000 |
0.3952 |
0.9125 |
0.0021 |
7.98 |
5100 |
0.3952 |
0.9129 |
Framework versions
- Transformers 4.19.4
- Pytorch 1.5.1
- Datasets 2.3.2
- Tokenizers 0.12.1
đ License
This model is licensed under the Apache 2.0 license.