đ microsoft-resnet-50-cartoon-emotion-detection
This model is a fine - tuned version of microsoft/resnet-50 on the imagefolder dataset. It can be used for cartoon emotion detection, achieving high accuracy, precision, recall, and F1 scores on the evaluation set.
đ Quick Start
This model is a fine - tuned version of microsoft/resnet-50 on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4801
- Accuracy: 0.8165
- Precision: 0.8182
- Recall: 0.8165
- F1: 0.8173
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00012
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
0.97 |
8 |
1.3855 |
0.2294 |
0.2697 |
0.2294 |
0.2165 |
1.4222 |
1.97 |
16 |
1.3792 |
0.2569 |
0.2808 |
0.2569 |
0.2543 |
1.4183 |
2.97 |
24 |
1.3646 |
0.3853 |
0.4102 |
0.3853 |
0.3511 |
1.4097 |
3.97 |
32 |
1.3563 |
0.4128 |
0.5062 |
0.4128 |
0.3245 |
1.3944 |
4.97 |
40 |
1.3462 |
0.4037 |
0.3927 |
0.4037 |
0.2939 |
1.3944 |
5.97 |
48 |
1.3223 |
0.4037 |
0.5152 |
0.4037 |
0.2841 |
1.411 |
6.97 |
56 |
1.3040 |
0.4128 |
0.4404 |
0.4128 |
0.2985 |
1.346 |
7.97 |
64 |
1.2700 |
0.4954 |
0.4960 |
0.4954 |
0.4093 |
1.3031 |
8.97 |
72 |
1.2150 |
0.5596 |
0.5440 |
0.5596 |
0.4672 |
1.2371 |
9.97 |
80 |
1.1580 |
0.5963 |
0.5659 |
0.5963 |
0.5101 |
1.2371 |
10.97 |
88 |
1.0670 |
0.6055 |
0.7279 |
0.6055 |
0.5211 |
1.1736 |
11.97 |
96 |
0.9856 |
0.6606 |
0.5537 |
0.6606 |
0.5772 |
1.0457 |
12.97 |
104 |
0.8963 |
0.6697 |
0.7631 |
0.6697 |
0.5965 |
0.953 |
13.97 |
112 |
0.8547 |
0.6697 |
0.6885 |
0.6697 |
0.6081 |
0.8579 |
14.97 |
120 |
0.7849 |
0.7156 |
0.7396 |
0.7156 |
0.6643 |
0.8579 |
15.97 |
128 |
0.7564 |
0.7431 |
0.7372 |
0.7431 |
0.7119 |
0.8167 |
16.97 |
136 |
0.7133 |
0.7615 |
0.7507 |
0.7615 |
0.7211 |
0.7273 |
17.97 |
144 |
0.6888 |
0.7523 |
0.7379 |
0.7523 |
0.7202 |
0.6547 |
18.97 |
152 |
0.6592 |
0.7798 |
0.7773 |
0.7798 |
0.7577 |
0.5963 |
19.97 |
160 |
0.6136 |
0.7706 |
0.7642 |
0.7706 |
0.7551 |
0.5963 |
20.97 |
168 |
0.5723 |
0.7890 |
0.7802 |
0.7890 |
0.7787 |
0.551 |
21.97 |
176 |
0.5686 |
0.7890 |
0.7761 |
0.7890 |
0.7781 |
0.4929 |
22.97 |
184 |
0.5597 |
0.7706 |
0.7649 |
0.7706 |
0.7651 |
0.4309 |
23.97 |
192 |
0.5234 |
0.7890 |
0.7774 |
0.7890 |
0.7810 |
0.3945 |
24.97 |
200 |
0.5008 |
0.7890 |
0.7837 |
0.7890 |
0.7813 |
0.3945 |
25.97 |
208 |
0.5289 |
0.7523 |
0.7537 |
0.7523 |
0.7529 |
0.3704 |
26.97 |
216 |
0.4399 |
0.7982 |
0.7958 |
0.7982 |
0.7963 |
0.3267 |
27.97 |
224 |
0.4539 |
0.8073 |
0.7983 |
0.8073 |
0.8005 |
0.2966 |
28.97 |
232 |
0.4735 |
0.7798 |
0.7892 |
0.7798 |
0.7837 |
0.2645 |
29.97 |
240 |
0.4594 |
0.7706 |
0.7706 |
0.7706 |
0.7706 |
0.2645 |
30.97 |
248 |
0.4699 |
0.7523 |
0.7554 |
0.7523 |
0.7533 |
0.2527 |
31.97 |
256 |
0.4551 |
0.7890 |
0.7856 |
0.7890 |
0.7857 |
0.2202 |
32.97 |
264 |
0.4458 |
0.8165 |
0.8198 |
0.8165 |
0.8170 |
0.2006 |
33.97 |
272 |
0.4632 |
0.7798 |
0.7941 |
0.7798 |
0.7850 |
0.1589 |
34.97 |
280 |
0.4651 |
0.7890 |
0.7993 |
0.7890 |
0.7925 |
0.1589 |
35.97 |
288 |
0.4595 |
0.7798 |
0.7824 |
0.7798 |
0.7804 |
0.153 |
36.97 |
296 |
0.4584 |
0.7615 |
0.7691 |
0.7615 |
0.7633 |
0.1427 |
37.97 |
304 |
0.4608 |
0.7798 |
0.7830 |
0.7798 |
0.7796 |
0.113 |
38.97 |
312 |
0.4571 |
0.7890 |
0.7922 |
0.7890 |
0.7899 |
0.1146 |
39.97 |
320 |
0.5270 |
0.7615 |
0.7651 |
0.7615 |
0.7613 |
0.1146 |
40.97 |
328 |
0.4888 |
0.7706 |
0.7782 |
0.7706 |
0.7710 |
0.1275 |
41.97 |
336 |
0.4523 |
0.7890 |
0.7809 |
0.7890 |
0.7837 |
0.0959 |
42.97 |
344 |
0.4697 |
0.7798 |
0.7753 |
0.7798 |
0.7767 |
0.0882 |
43.97 |
352 |
0.4286 |
0.7706 |
0.7686 |
0.7706 |
0.7686 |
0.0847 |
44.97 |
360 |
0.5317 |
0.7890 |
0.7993 |
0.7890 |
0.7925 |
0.0847 |
45.97 |
368 |
0.5431 |
0.7615 |
0.7700 |
0.7615 |
0.7647 |
0.0813 |
46.97 |
376 |
0.4432 |
0.8257 |
0.8435 |
0.8257 |
0.8284 |
0.0768 |
47.97 |
384 |
0.4886 |
0.7982 |
0.8005 |
0.7982 |
0.7956 |
0.0627 |
48.97 |
392 |
0.5373 |
0.7982 |
0.8072 |
0.7982 |
0.8010 |
0.0688 |
49.97 |
400 |
0.5897 |
0.7798 |
0.7892 |
0.7798 |
0.7822 |
0.0688 |
50.97 |
408 |
0.5115 |
0.7982 |
0.8015 |
0.7982 |
0.7992 |
0.0676 |
51.97 |
416 |
0.4881 |
0.7982 |
0.7998 |
0.7982 |
0.7978 |
0.0539 |
52.97 |
424 |
0.4820 |
0.8073 |
0.8139 |
0.8073 |
0.8077 |
0.0596 |
53.97 |
432 |
0.4450 |
0.8257 |
0.8246 |
0.8257 |
0.8244 |
0.0611 |
54.97 |
440 |
0.5057 |
0.7890 |
0.8008 |
0.7890 |
0.7924 |
0.0611 |
55.97 |
448 |
0.4918 |
0.7982 |
0.8056 |
0.7982 |
0.8008 |
0.0643 |
56.97 |
456 |
0.5946 |
0.7523 |
0.7587 |
0.7523 |
0.7545 |
0.0605 |
57.97 |
464 |
0.4888 |
0.8073 |
0.8239 |
0.8073 |
0.8121 |
0.063 |
58.97 |
472 |
0.5917 |
0.7890 |
0.8051 |
0.7890 |
0.7937 |
0.0595 |
59.97 |
480 |
0.5117 |
0.7890 |
0.7904 |
0.7890 |
0.7894 |
0.0595 |
60.97 |
488 |
0.5497 |
0.7615 |
0.7692 |
0.7615 |
0.7635 |
0.0554 |
61.97 |
496 |
0.4742 |
0.8165 |
0.8101 |
0.8165 |
0.8126 |
0.0557 |
62.97 |
504 |
0.5369 |
0.7890 |
0.7886 |
0.7890 |
0.7886 |
0.0539 |
63.97 |
512 |
0.5440 |
0.7890 |
0.7922 |
0.7890 |
0.7899 |
0.048 |
64.97 |
520 |
0.5924 |
0.7890 |
0.7878 |
0.7890 |
0.7883 |
0.048 |
65.97 |
528 |
0.4863 |
0.8440 |
0.8440 |
0.8440 |
0.8440 |
0.045 |
66.97 |
536 |
0.5850 |
0.8073 |
0.8076 |
0.8073 |
0.8047 |
0.047 |
67.97 |
544 |
0.4939 |
0.8257 |
0.8212 |
0.8257 |
0.8227 |
0.0412 |
68.97 |
552 |
0.4850 |
0.7890 |
0.7912 |
0.7890 |
0.7900 |
0.0392 |
69.97 |
560 |
0.5066 |
0.8257 |
0.8265 |
0.8257 |
0.8258 |
0.0392 |
70.97 |
568 |
0.4965 |
0.8073 |
0.8053 |
0.8073 |
0.8058 |
0.0423 |
71.97 |
576 |
0.4717 |
0.8349 |
0.8376 |
0.8349 |
0.8351 |
0.0471 |
72.97 |
584 |
0.4845 |
0.8257 |
0.8378 |
0.8257 |
0.8296 |
0.0322 |
73.97 |
592 |
0.5188 |
0.7706 |
0.7689 |
0.7706 |
0.7693 |
0.042 |
74.97 |
600 |
0.5242 |
0.7706 |
0.7699 |
0.7706 |
0.7701 |
0.042 |
75.97 |
608 |
0.5945 |
0.7798 |
0.7824 |
0.7798 |
0.7804 |
0.0416 |
76.97 |
616 |
0.5432 |
0.7982 |
0.8038 |
0.7982 |
0.7993 |
0.0399 |
77.97 |
624 |
0.5381 |
0.7982 |
0.8072 |
0.7982 |
0.7994 |
0.0439 |
78.97 |
632 |
0.6181 |
0.7798 |
0.7878 |
0.7798 |
0.7827 |
0.0462 |
79.97 |
640 |
0.4801 |
0.8165 |
0.8182 |
0.8165 |
0.8173 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.11.0
đ License
This project is licensed under the Apache - 2.0 license.