Mit B0 CMP Semantic Seg With Mps V2
Model Overview
Model Features
Model Capabilities
Use Cases
đ mit-b0-CMP_semantic_seg_with_mps_v2
This model is a fine - tuned version of nvidia/mit-b0, designed for image segmentation tasks. It offers a set of evaluation metrics that demonstrate its performance on the relevant dataset.
đ Quick Start
This section provides a high - level overview of the model. For more detailed usage, please refer to the relevant sections below.
⨠Features
- Fine - tuned Model: Based on nvidia/mit-b0, it has been fine - tuned to better suit specific tasks.
- Rich Evaluation Metrics: Provides multiple evaluation metrics such as loss, mean IoU, mean accuracy, and overall accuracy, as well as per - category IoU and accuracy.
đ Documentation
Model description
For more information on how it was created, check out the following link: Creation Details
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to use it, but remember that it is at your own risk/peril.
Training and evaluation data
Dataset Source: Xpitfire/cmp_facade
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
Property | Details |
---|---|
learning_rate | 6e - 05 |
train_batch_size | 2 |
eval_batch_size | 2 |
seed | 42 |
optimizer | Adam with betas=(0.9,0.999) and epsilon=1e - 08 |
lr_scheduler_type | linear |
num_epochs | 50 |
Training results
Overall Dataset Metrics
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|
1.6807 | 1.0 | 189 | 1.3310 | 0.2226 | 0.3388 | 0.5893 |
1.1837 | 2.0 | 378 | 1.1731 | 0.2602 | 0.3876 | 0.6122 |
1.0241 | 3.0 | 567 | 1.0485 | 0.2915 | 0.3954 | 0.6393 |
0.9353 | 4.0 | 756 | 0.9943 | 0.3054 | 0.4021 | 0.6570 |
0.8717 | 5.0 | 945 | 1.0010 | 0.3299 | 0.4440 | 0.6530 |
0.8238 | 6.0 | 1134 | 0.9537 | 0.3546 | 0.4771 | 0.6701 |
0.7415 | 8.0 | 1512 | 0.9738 | 0.3554 | 0.4634 | 0.6733 |
0.7708 | 7.0 | 1323 | 0.9789 | 0.3550 | 0.4837 | 0.6683 |
0.7018 | 9.0 | 1701 | 0.9449 | 0.3667 | 0.4802 | 0.6826 |
0.682 | 10.0 | 1890 | 0.9422 | 0.3762 | 0.5047 | 0.6805 |
0.6503 | 11.0 | 2079 | 0.9889 | 0.3785 | 0.5082 | 0.6729 |
0.633 | 12.0 | 2268 | 0.9594 | 0.3901 | 0.5224 | 0.6797 |
0.6035 | 13.0 | 2457 | 0.9612 | 0.3939 | 0.5288 | 0.6834 |
0.5874 | 14.0 | 2646 | 0.9657 | 0.3939 | 0.5383 | 0.6844 |
0.5684 | 15.0 | 2835 | 0.9762 | 0.3950 | 0.5446 | 0.6855 |
0.5485 | 16.0 | 3024 | 1.0645 | 0.3794 | 0.5095 | 0.6704 |
0.5402 | 17.0 | 3213 | 0.9747 | 0.4044 | 0.5600 | 0.6839 |
0.5275 | 18.0 | 3402 | 1.0054 | 0.3944 | 0.5411 | 0.6790 |
0.5032 | 19.0 | 3591 | 1.0014 | 0.3973 | 0.5256 | 0.6875 |
0.4985 | 20.0 | 3780 | 0.9893 | 0.3990 | 0.5468 | 0.6883 |
0.4925 | 21.0 | 3969 | 1.0416 | 0.3955 | 0.5339 | 0.6806 |
0.4772 | 22.0 | 4158 | 1.0142 | 0.3969 | 0.5476 | 0.6838 |
0.4707 | 23.0 | 4347 | 0.9896 | 0.4077 | 0.5458 | 0.6966 |
0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 |
0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 |
0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 |
0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 |
0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 |
0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 |
0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 |
0.4106 | 31.0 | 5859 | 1.0573 | 0.4113 | 0.5520 | 0.6937 |
0.4102 | 32.0 | 6048 | 1.0616 | 0.4043 | 0.5444 | 0.6904 |
0.394 | 33.0 | 6237 | 1.0244 | 0.4104 | 0.5587 | 0.6957 |
0.3865 | 34.0 | 6426 | 1.0618 | 0.4086 | 0.5468 | 0.6922 |
0.3816 | 35.0 | 6615 | 1.0515 | 0.4109 | 0.5587 | 0.6937 |
0.3803 | 36.0 | 6804 | 1.0709 | 0.4118 | 0.5507 | 0.6982 |
0.3841 | 37.0 | 6993 | 1.0646 | 0.4102 | 0.5423 | 0.7000 |
0.383 | 38.0 | 7182 | 1.0769 | 0.4076 | 0.5463 | 0.6981 |
0.3831 | 39.0 | 7371 | 1.0821 | 0.4081 | 0.5438 | 0.6949 |
0.3701 | 40.0 | 7560 | 1.0971 | 0.4094 | 0.5503 | 0.6939 |
0.3728 | 41.0 | 7749 | 1.0850 | 0.4073 | 0.5426 | 0.6955 |
0.3693 | 42.0 | 7938 | 1.0969 | 0.4065 | 0.5503 | 0.6922 |
0.3627 | 43.0 | 8127 | 1.0932 | 0.4087 | 0.5497 | 0.6948 |
0.3707 | 44.0 | 8316 | 1.1095 | 0.4071 | 0.5449 | 0.6950 |
0.3715 | 45.0 | 8505 | 1.0884 | 0.4110 | 0.5481 | 0.6962 |
0.3637 | 46.0 | 8694 | 1.0893 | 0.4116 | 0.5565 | 0.6948 |
0.3581 | 47.0 | 8883 | 1.1164 | 0.4080 | 0.5443 | 0.6938 |
0.3595 | 48.0 | 9072 | 1.1264 | 0.4056 | 0.5374 | 0.6942 |
0.3604 | 49.0 | 9261 | 1.0948 | 0.4104 | 0.5508 | 0.6953 |
0.3541 | 50.0 | 9450 | 1.0863 | 0.4097 | 0.5538 | 0.6951 |
Per Category IoU For Each Segment
Epoch | Segment 0 | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segment 8 | Segment 9 | Segment 10 | Segment 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 0.4635 | 0.4905 | 0.4698 | 0.0 | 0.2307 | 0.1515 | 0.2789 | 0.0002 | 0.0250 | 0.3527 | 0.0 | 0.2087 |
2.0 | 0.4240 | 0.5249 | 0.5152 | 0.0057 | 0.2636 | 0.2756 | 0.3312 | 0.0575 | 0.0539 | 0.3860 | 0.0 | 0.2854 |
3.0 | 0.5442 | 0.5037 | 0.5329 | 0.0412 | 0.3062 | 0.2714 | 0.3820 | 0.1430 | 0.0796 | 0.4007 | 0.0002 | 0.2929 |
4.0 | 0.5776 | 0.5289 | 0.5391 | 0.1171 | 0.3137 | 0.2600 | 0.3664 | 0.1527 | 0.1074 | 0.3935 | 0.0002 | 0.3078 |
5.0 | 0.4790 | 0.5506 | 0.5472 | 0.1547 | 0.3372 | 0.3297 | 0.4151 | 0.2339 | 0.1709 | 0.4081 | 0.0008 | 0.3314 |
6.0 | 0.5572 | 0.5525 | 0.5611 | 0.2076 | 0.3434 | 0.3163 | 0.4103 | 0.3279 | 0.2107 | 0.4191 | 0.0067 | 0.3418 |
7.0 | 0.5310 | 0.5634 | 0.5594 | 0.2299 | 0.3424 | 0.3375 | 0.4050 | 0.2883 | 0.2197 | 0.4142 | 0.0316 | 0.3373 |
8.0 | 0.5366 | 0.5659 | 0.5550 | 0.2331 | 0.3497 | 0.3334 | 0.4301 | 0.3401 | 0.1989 | 0.4181 | 0.0358 | 0.2680 |
9.0 | 0.5798 | 0.5657 | 0.5624 | 0.2368 | 0.3648 | 0.3271 | 0.4250 | 0.3207 | 0.2096 | 0.4236 | 0.0504 | 0.3346 |
10.0 | 0.5802 | 0.5622 | 0.5585 | 0.2340 | 0.3793 | 0.3407 | 0.4277 | 0.3801 | 0.2301 | 0.4216 | 0.0640 | 0.3367 |
11.0 | 0.5193 | 0.5649 | 0.5605 | 0.2698 | 0.3772 | 0.3526 | 0.4342 | 0.3433 | 0.2415 | 0.4336 | 0.0889 | 0.3562 |
12.0 | 0.5539 | 0.5641 | 0.5679 | 0.2658 | 0.3757 | 0.3510 | 0.4257 | 0.3993 | 0.2354 | 0.4338 | 0.1800 | 0.3287 |
13.0 | 0.5663 | 0.5666 | 0.5679 | 0.2631 | 0.3726 | 0.3609 | 0.4351 | 0.3759 | 0.2511 | 0.4256 | 0.1737 | 0.3681 |
14.0 | 0.5807 | 0.5670 | 0.5679 | 0.2670 | 0.3594 | 0.3605 | 0.4393 | 0.3863 | 0.2406 | 0.4228 | 0.1705 | 0.3652 |
15.0 | 0.5800 | 0.5711 | 0.5671 | 0.2825 | 0.3664 | 0.3587 | 0.4408 | 0.4021 | 0.2540 | 0.4246 | 0.1376 | 0.3548 |
16.0 | 0.4855 | 0.5683 | 0.5685 | 0.2612 | 0.3832 | 0.3628 | 0.4378 | 0.4056 | 0.2525 | 0.4206 | 0.1242 | 0.2825 |
17.0 | 0.5697 | 0.5674 | 0.5687 | 0.2971 | 0.3767 | 0.3741 | 0.4486 | 0.4126 | 0.2489 | 0.4260 | 0.1874 | 0.3757 |
18.0 | 0.5341 | 0.5728 | 0.5616 | 0.2827 | 0.3823 | 0.3782 | 0.4298 | 0.4070 | 0.2578 | 0.4195 | 0.1448 | 0.3632 |
19.0 | 0.5696 | 0.5739 | 0.5699 | 0.2918 | 0.3717 | 0.3635 | 0.4444 | 0.4122 | 0.2531 | 0.4142 | 0.1659 | 0.3369 |
20.0 | 0.5937 | 0.5702 | 0.5630 | 0.2892 | 0.3790 | 0.3757 | 0.4383 | 0.4110 | 0.2592 | 0.4147 | 0.1291 | 0.3653 |
21.0 | 0.5336 | 0.5723 | 0.5732 | 0.2843 | 0.3748 | 0.3738 | 0.4383 | 0.3876 | 0.2598 | 0.4170 | 0.1693 | 0.3624 |
22.0 | 0.5634 | 0.5752 | 0.5595 | 0.2783 | 0.3833 | 0.3540 | 0.4448 | 0.4054 | 0.2586 | 0.4145 | 0.1597 | 0.3660 |
23.0 | 0.6013 | 0.5801 | 0.5794 | 0.2988 | 0.3816 | 0.3736 | 0.4464 | 0.4241 | 0.2633 | 0.4162 | 0.1747 | 0.3530 |
24.0 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 |
25.0 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 |
26.0 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 |
27.0 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922 | - |
28.0 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 |
29.0 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 |
30.0 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 |
31.0 | 0.5819 | 0.5787 | 0.5775 | 0.2882 | 0.3861 | 0.3888 | 0.4522 | 0.4207 | 0.2722 | 0.4277 | 0.2050 | 0.3566 |
32.0 | 0.5769 | 0.5774 | 0.5737 | 0.2844 | 0.3762 | 0.3768 | 0.4424 | 0.4331 | 0.2649 | 0.3959 | 0.1748 | 0.3744 |
33.0 | 0.6076 | 0.5755 | 0.5774 | 0.2887 | 0.3833 | 0.3803 | 0.4483 | 0.4329 | 0.2687 | 0.4194 | 0.1884 | 0.3547 |
34.0 | 0.5729 | 0.5787 | 0.5789 | 0.2853 | 0.3854 | 0.3735 | 0.4469 | 0.4279 | 0.2694 | 0.4240 | 0.1986 | 0.3613 |
35.0 | 0.5942 | 0.5769 | 0.5777 | 0.2873 | 0.3867 | 0.3811 | 0.4448 | 0.4281 | 0.2669 | 0.4147 | 0.1956 | 0.3774 |
36.0 | 0.6024 | 0.5819 | 0.5782 | 0.2870 | 0.3850 | 0.3781 | 0.4469 | 0.4259 | 0.2696 | 0.4177 | 0.1885 | 0.3802 |
37.0 | 0.6099 | 0.5822 | 0.5787 | 0.2920 | 0.3827 | 0.3739 | 0.4416 | 0.4271 | 0.2646 | 0.4200 | 0.1864 | 0.3637 |
38.0 | 0.6028 | 0.5823 | 0.5799 | 0.2887 | 0.3828 | 0.3770 | 0.4470 | 0.4238 | 0.2639 | 0.4197 | 0.1617 | 0.3610 |
39.0 | 0.5856 | 0.5809 | 0.5772 | 0.2889 | 0.3772 | 0.3683 | 0.4493 | 0.4296 | 0.2665 | 0.4112 | 0.1902 | 0.3723 |
40.0 | 0.5830 | 0.5808 | 0.5785 | 0.2947 | 0.3803 | 0.3832 | 0.4496 | 0.4284 | 0.2675 | 0.4111 | 0.1913 | 0.3644 |
41.0 | 0.5853 | 0.5827 | 0.5786 | 0.2921 | 0.3809 | 0.3712 | 0.4464 | 0.4330 | 0.2670 | 0.4180 | 0.1631 | 0.3694 |
42.0 | 0.5756 | 0.5804 | 0.5766 | 0.2872 | 0.3775 | 0.3786 | 0.4480 | 0.4396 | 0.2669 | 0.4132 | 0.1619 | 0.3729 |
43.0 | 0.5872 | 0.5821 | 0.5762 | 0.2896 | 0.3820 | 0.3742 | 0.4499 | 0.4346 | 0.2685 | 0.4164 | 0.1848 | 0.3597 |
44.0 | 0.5894 | 0.5823 | 0.5774 | 0.2917 | 0.3801 | 0.3754 | 0.4476 | 0.4287 | 0.2635 | 0.4096 | 0.1911 | 0.3478 |
45.0 | 0.5912 | 0.5809 | 0.5791 | 0.2980 | 0.3817 |
Evaluation results
It achieves the following results on the evaluation set:
- Loss: 1.0863
- Mean Iou: 0.4097
- Mean Accuracy: 0.5538
- Overall Accuracy: 0.6951
- Per Category Iou:
- Segment 0: 0.5921698801573617
- Segment 1: 0.5795623712718901
- Segment 2: 0.5784812820145221
- Segment 3: 0.2917052691882505
- Segment 4: 0.3792639848157326
- Segment 5: 0.37973303153855376
- Segment 6: 0.4481097636024487
- Segment 7: 0.4354492668218124
- Segment 8: 0.26472453634508664
- Segment 9: 0.4173722023142026
- Segment 10: 0.18166072949276144
- Segment 11: 0.36809541729585366
- Per Category Accuracy:
- Segment 0: 0.6884460857323806
- Segment 1: 0.7851625477616788
- Segment 2: 0.7322992353412343
- Segment 3: 0.45229387721112274
- Segment 4: 0.5829333862769369
- Segment 5: 0.5516333441001092
- Segment 6: 0.5904157921999404
- Segment 7: 0.5288772981353482
- Segment 8: 0.4518224891972707
- Segment 9: 0.571864661897264
- Segment 10: 0.23178753217655862
- Segment 11: 0.47833833709905393
đ License
This project uses an "other" license.









