Upernetconvnext Finetuned Segments Food Oct 14
Model Overview
Model Features
Model Capabilities
Use Cases
đ upernetconvnext-finetuned-segments-food-oct-14
This model is a fine - tuned version of [openmmlab/upernet - convnext - small](https://huggingface.co/openmmlab/upernet - convnext - small) on the EduardoPacheco/FoodSeg103 dataset. It can be used for image segmentation tasks in the food domain, providing evaluation results on key metrics such as loss, mean Iou, and various accuracy values.
đ Quick Start
This section provides a brief introduction to the model and its evaluation results. For more detailed usage, please refer to the following sections.
⨠Features
- Fine - tuned Model: Based on the [openmmlab/upernet - convnext - small](https://huggingface.co/openmmlab/upernet - convnext - small) model, it is fine - tuned on the EduardoPacheco/FoodSeg103 dataset.
- Comprehensive Evaluation Metrics: Provides multiple evaluation metrics on the evaluation set, including loss, mean Iou, mean accuracy, overall accuracy, and accuracy for different food categories.
đ Documentation
Model Performance
This model is a fine - tuned version of [openmmlab/upernet - convnext - small](https://huggingface.co/openmmlab/upernet - convnext - small) on the EduardoPacheco/FoodSeg103 dataset. It achieves the following results on the evaluation set:
- Loss: 2.7723
- Mean Iou: 0.0671
- Mean Accuracy: 0.1792
- Overall Accuracy: 0.1867
- Accuracy Background: nan
- Accuracy Candy: nan
- Accuracy Egg tart: nan
- Accuracy French fries: 0.1073
- Accuracy Chocolate: nan
- Accuracy Biscuit: nan
- Accuracy Popcorn: nan
- Accuracy Pudding: nan
- Accuracy Ice cream: 0.1838
- Accuracy Cheese butter: nan
- Accuracy Cake: 0.0
- Accuracy Wine: nan
- Accuracy Milkshake: nan
- Accuracy Coffee: nan
- Accuracy Juice: 0.0
- Accuracy Milk: nan
- Accuracy Tea: nan
- Accuracy Almond: nan
- Accuracy Red beans: nan
- Accuracy Cashew: nan
- Accuracy Dried cranberries: nan
- Accuracy Soy: nan
- Accuracy Walnut: nan
- Accuracy Peanut: nan
- Accuracy Egg: 0.0
- Accuracy Apple: 0.0
- Accuracy Date: nan
- Accuracy Apricot: nan
- Accuracy Avocado: nan
- Accuracy Banana: 0.0
- Accuracy Strawberry: 0.1034
- Accuracy Cherry: nan
- Accuracy Blueberry: nan
- Accuracy Raspberry: nan
- Accuracy Mango: nan
- Accuracy Olives: nan
- Accuracy Peach: nan
- Accuracy Lemon: 0.2544
- Accuracy Pear: nan
- Accuracy Fig: nan
- Accuracy Pineapple: 0.0
- Accuracy Grape: nan
- Accuracy Kiwi: nan
- Accuracy Melon: nan
- Accuracy Orange: 0.5418
- Accuracy Watermelon: nan
- Accuracy Steak: 0.0
- Accuracy Pork: 0.0
- Accuracy Chicken duck: 0.3444
- Accuracy Sausage: 0.0
- Accuracy Fried meat: nan
- Accuracy Lamb: nan
- Accuracy Sauce: 0.2308
- Accuracy Crab: nan
- Accuracy Fish: 0.0
- Accuracy Shellfish: nan
- Accuracy Shrimp: nan
- Accuracy Soup: nan
- Accuracy Bread: 0.9865
- Accuracy Corn: nan
- Accuracy Hamburg: nan
- Accuracy Pizza: 0.0
- Accuracy hanamaki baozi: nan
- Accuracy Wonton dumplings: nan
- Accuracy Pasta: nan
- Accuracy Noodles: nan
- Accuracy Rice: 0.4019
- Accuracy Pie: 0.0
- Accuracy Tofu: nan
- Accuracy Eggplant: nan
- Accuracy Potato: 0.1621
- Accuracy Garlic: nan
- Accuracy Cauliflower: 0.0
- Accuracy Tomato: 0.5529
- Accuracy Kelp: nan
- Accuracy Seaweed: nan
- Accuracy Spring onion: nan
- Accuracy Rape: nan
- Accuracy Ginger: nan
- Accuracy Okra: nan
- Accuracy Lettuce: nan
- Accuracy Pumpkin: nan
- Accuracy Cucumber: nan
- Accuracy White radish: nan
- Accuracy Carrot: 0.9551
- Accuracy Asparagus: 0.0012
- Accuracy Bamboo shoots: nan
- Accuracy Broccoli: 0.9085
- Accuracy Celery stick: nan
- Accuracy Cilantro mint: 0.0
- Accuracy Snow peas: nan
- Accuracy cabbage: nan
- Accuracy Bean sprouts: nan
- Accuracy Onion: 0.0
- Accuracy Pepper: 0.0
- Accuracy Green beans: nan
- Accuracy French beans: 0.0001
- Accuracy King oyster mushroom: nan
- Accuracy Shiitake: nan
- Accuracy Enoki mushroom: nan
- Accuracy Oyster mushroom: nan
- Accuracy White button mushroom: nan
- Accuracy Salad: nan
- Accuracy Other ingredients: 0.0
- Iou Background: 0.0
- Iou Candy: nan
- Iou Egg tart: nan
- Iou French fries: 0.0801
- Iou Chocolate: nan
- Iou Biscuit: nan
- Iou Popcorn: nan
- Iou Pudding: nan
- Iou Ice cream: 0.0147
- Iou Cheese butter: nan
- Iou Cake: 0.0
- Iou Wine: nan
- Iou Milkshake: nan
- Iou Coffee: nan
- Iou Juice: 0.0
- Iou Milk: nan
- Iou Tea: nan
- Iou Almond: nan
- Iou Red beans: nan
- Iou Cashew: nan
- Iou Dried cranberries: nan
- Iou Soy: nan
- Iou Walnut: nan
- Iou Peanut: nan
- Iou Egg: 0.0
- Iou Apple: 0.0
- Iou Date: nan
- Iou Apricot: nan
- Iou Avocado: nan
- Iou Banana: 0.0
- Iou Strawberry: 0.1005
- Iou Cherry: nan
- Iou Blueberry: nan
- Iou Raspberry: nan
- Iou Mango: nan
- Iou Olives: nan
- Iou Peach: nan
- Iou Lemon: 0.2328
- Iou Pear: nan
- Iou Fig: nan
- Iou Pineapple: 0.0
- Iou Grape: nan
- Iou Kiwi: nan
- Iou Melon: nan
- Iou Orange: 0.3032
- Iou Watermelon: nan
- Iou Steak: 0.0
- Iou Pork: 0.0
- Iou Chicken duck: 0.0980
- Iou Sausage: 0.0
- Iou Fried meat: nan
- Iou Lamb: nan
- Iou Sauce: 0.2163
- Iou Crab: nan
- Iou Fish: 0.0
- Iou Shellfish: nan
- Iou Shrimp: nan
- Iou Soup: nan
- Iou Bread: 0.2062
- Iou Corn: nan
- Iou Hamburg: nan
- Iou Pizza: 0.0
- Iou hanamaki baozi: nan
- Iou Wonton dumplings: nan
- Iou Pasta: nan
- Iou Noodles: nan
- Iou Rice: 0.1747
- Iou Pie: 0.0
- Iou Tofu: nan
- Iou Eggplant: nan
- Iou Potato: 0.1605
- Iou Garlic: nan
- Iou Cauliflower: 0.0
- Iou Tomato: 0.0681
- Iou Kelp: nan
- Iou Seaweed: nan
- Iou Spring onion: nan
- Iou Rape: nan
- Iou Ginger: nan
- Iou Okra: nan
- Iou Lettuce: 0.0
- Iou Pumpkin: nan
- Iou Cucumber: nan
- Iou White radish: nan
- Iou Carrot: 0.4083
- Iou Asparagus: 0.0011
- Iou Bamboo shoots: nan
- Iou Broccoli: 0.2155
- Iou Celery stick: nan
- Iou Cilantro mint: 0.0
- Iou Snow peas: nan
- Iou cabbage: nan
- Iou Bean sprouts: nan
- Iou Onion: 0.0
- Iou Pepper: 0.0
- Iou Green beans: nan
- Iou French beans: 0.0001
- Iou King oyster mushroom: nan
- Iou Shiitake: nan
- Iou Enoki mushroom: nan
- Iou Oyster mushroom: nan
- Iou White button mushroom: nan
- Iou Salad: nan
- Iou Other ingredients: 0.0
Training Procedure
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 5
Training Results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Candy | Accuracy Egg tart | Accuracy French fries | Accuracy Chocolate | Accuracy Biscuit | Accuracy Popcorn | Accuracy Pudding | Accuracy Ice cream | Accuracy Cheese butter | Accuracy Cake | Accuracy Wine | Accuracy Milkshake | Accuracy Coffee | Accuracy Juice | Accuracy Milk | Accuracy Tea | Accuracy Almond | Accuracy Red beans | Accuracy Cashew | Accuracy Dried cranberries | Accuracy Soy | Accuracy Walnut | Accuracy Peanut | Accuracy Egg | Accuracy Apple | Accuracy Date | Accuracy Apricot | Accuracy Avocado | Accuracy Banana | Accuracy Strawberry | Accuracy Cherry | Accuracy Blueberry | Accuracy Raspberry | Accuracy Mango | Accuracy Olives | Accuracy Peach | Accuracy Lemon | Accuracy Pear | Accuracy Fig | Accuracy Pineapple | Accuracy Grape | Accuracy Kiwi | Accuracy Melon | Accuracy Orange | Accuracy Watermelon | Accuracy Steak | Accuracy Pork | Accuracy Chicken duck | Accuracy Sausage | Accuracy Fried meat | Accuracy Lamb | Accuracy Sauce | Accuracy Crab | Accuracy Fish | Accuracy Shellfish | Accuracy Shrimp | Accuracy Soup | Accuracy Bread | Accuracy Corn | Accuracy Hamburg | Accuracy Pizza | Accuracy hanamaki baozi | Accuracy Wonton dumplings | Accuracy Pasta | Accuracy Noodles | Accuracy Rice | Accuracy Pie | Accuracy Tofu | Accuracy Eggplant | Accuracy Potato | Accuracy Garlic | Accuracy Cauliflower | Accuracy Tomato | Accuracy Kelp | Accuracy Seaweed | Accuracy Spring onion | Accuracy Rape | Accuracy Ginger | Accuracy Okra | Accuracy Lettuce | Accuracy Pumpkin | Accuracy Cucumber | Accuracy White radish | Accuracy Carrot | Accuracy Asparagus | Accuracy Bamboo shoots | Accuracy Broccoli | Accuracy Celery stick | Accuracy Cilantro mint | Accuracy Snow peas | Accuracy cabbage | Accuracy Bean sprouts | Accuracy Onion | Accuracy Pepper | Accuracy Green beans | Accuracy French beans | Accuracy King oyster mushroom | Accuracy Shiitake | Accuracy Enoki mushroom | Accuracy Oyster mushroom | Accuracy White button mushroom | Accuracy Salad | Accuracy Other ingredients | Iou Background | Iou Candy | Iou Egg tart | Iou French fries | Iou Chocolate | Iou Biscuit | Iou Popcorn | Iou Pudding | Iou Ice cream | Iou Cheese butter | Iou Cake | Iou Wine | Iou Milkshake | Iou Coffee | Iou Juice | Iou Milk | Iou Tea | Iou Almond | Iou Red beans | Iou Cashew | Iou Dried cranberries | Iou Soy | Iou Walnut | Iou Peanut | Iou Egg | Iou Apple | Iou Date | Iou Apricot | Iou Avocado | Iou Banana | Iou Strawberry | Iou Cherry | Iou Blueberry | Iou Raspberry | Iou Mango | Iou Olives | Iou Peach | Iou Lemon | Iou Pear | Iou Fig | Iou Pineapple | Iou Grape | Iou Kiwi | Iou Melon | Iou Orange | Iou Watermelon | Iou Steak | Iou Pork | Iou Chicken duck | Iou Sausage | Iou Fried meat | Iou Lamb | Iou Sauce | Iou Crab | Iou Fish | Iou Shellfish | Iou Shrimp | Iou Soup | Iou Bread | Iou Corn | Iou Hamburg | Iou Pizza | Iou hanamaki baozi | Iou Wonton dumplings | Iou Pasta | Iou Noodles | Iou Rice | Iou Pie | Iou Tofu | Iou Eggplant | Iou Potato | Iou Garlic | Iou Cauliflower | Iou Tomato | Iou Kelp | Iou Seaweed | Iou Spring onion | Iou Rape | Iou Ginger | Iou Okra | Iou Lettuce | Iou Pumpkin | Iou Cucumber | Iou White radish | Iou Carrot | Iou Asparagus | Iou Bamboo shoots | Iou Broccoli | Iou Celery stick | Iou Cilantro mint | Iou Snow peas | Iou cabbage | Iou Bean sprouts | Iou Onion | Iou Pepper | Iou Green beans | Iou French beans | Iou King oyster mushroom | Iou Shiitake | Iou Enoki mushroom | Iou Oyster mushroom | Iou White button mushroom | Iou Salad | Iou Other ingredients | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:-----------------:|:---------------------:|:------------------:|:----------------:|:----------------:|:----------------:|:------------------:|:----------------------:|:-------------:|:-------------:|:------------------:|:---------------:|:--------------:|:-------------:|:------------:|:---------------:|:------------------:|:---------------:|:--------------------------:|:------------:|:---------------:|:---------------:|:------------:|:--------------:|:-------------:|:----------------:|:----------------:|:---------------:|:-------------------:|:---------------:|:------------------:|:------------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------:|:------------:|:------------------:|:--------------:|:-------------:|:--------------:|:---------------:|:-------------------:|:--------------:|:-------------:|:---------------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:-------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:----------------:|:--------------:|:------------------------:|:-------------------------:|:--------------:|:----------------:|:-------------:|:------------:|:-------------:|:-----------------:|:---------------:|:---------------:|:--------------------:|:---------------:|:-------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------:|:----------------:|:----------------:|:-----------------:|:---------------------:|:---------------:|:------------------:|:----------------------:|:-----------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:---------------------:|:--------------:|:---------------:|:--------------------:|:---------------------:|:-----------------------------:|:-----------------:|:-----------------------:|:------------------------:|:------------------------------:|:--------------:|:--------------------------:|:--------------:|:---------:|:------------:|:----------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-------------:|:-----------------:|:--------:|:--------:|:-------------:|:----------:|:---------:|:--------:|:-------:|:----------:|:-------------:|:----------:|:---------------------:|:-------:|:----------:|:----------:|:-------:|:---------:|:--------:|:-----------:|:-----------:|:----------:|:--------------:|:----------:|:-------------:|:-------------:|:---------:|:----------:|:---------:|:---------:|:--------:|:-------:|:-------------:|:---------:|:--------:|:---------:|:----------:|:--------------:|:---------:|:--------:|:----------------:|:-----------:|:--------------:|:--------:|:---------:|:--------:|:--------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:-----------:|:---------:|:-------------------:|:--------------------:|:---------:|:-----------:|:--------:|:-------:|:--------:|:------------:|:----------:|:----------:|:---------------:|:------:|
đ License
This model is released under the MIT license.









