🚀 ConvLLaVA-JP Model Card
ConvLLaVA-JP is a vision - language model designed to engage in conversations about input images, offering high - resolution input support.
🚀 Quick Start
To use the ConvLLaVA - JP model, you need to follow the steps below:
- Download the necessary dependencies.
- Perform inference using the provided code example.
📦 Installation
git clone https://github.com/tosiyuki/LLaVA-JP.git
💻 Usage Examples
Basic Usage
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
model_path = 'toshi456/ConvLLaVA-JP-1.3b-1280'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1532,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).to(torch_dtype)
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1]
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
with torch.inference_mode():
output_id = model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=False,
temperature=1.0,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""猫の隣にはノートパソコンがあります。"""
📚 Documentation
Model Details
Model Type:
ConvLLaVA - JP is a vision - language model capable of conversing about input images. This LVLM model uses [laion/CLIP - convnext_large_d_320.laion2B - s29B - b131K - ft](https://huggingface.co/laion/CLIP - convnext_large_d_320.laion2B - s29B - b131K - ft) as the image encoder and [llm - jp/llm - jp - 1.3b - v1.0](https://huggingface.co/llm - jp/llm - jp - 1.3b - v1.0) as the text decoder, supporting an input resolution of 1280 x 1280.
Training:
This model was initially trained with the Vision Projector and Stage 5 using LLaVA - Pretrain - JA. In the second phase, it was trained on the Image Encoder, Vision Projector, Stage 5, and LLM using LLaVA - Pretrain - JA. In the third phase, it was fine - tuned with the Vision Projector and LLM using LLaVA - v1.5 - Instruct - 620K - JA.
For more information, refer to: https://github.com/tosiyuki/LLaVA - JP/tree/main
Comparing VLMs
Model |
JA - VG - VQA - 500 (ROUGE - L) |
JA - VLM - Bench - In - the - Wild (ROUGE - L) |
Heron - Bench(Detail) |
Heron - Bench(Conv) |
Heron - Bench(Complex) |
Heron - Bench(Average) |
[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese - stable - vlm) |
- |
40.50 |
25.15 |
51.23 |
37.84 |
38.07 |
[EvoVLM - JP - v1 - 7B](https://huggingface.co/SakanaAI/EvoVLM - JP - v1 - 7B) |
19.70 |
51.25 |
50.31 |
44.42 |
40.47 |
45.07 |
[Heron BLIP Japanese StableLM Base 7B llava - 620k](https://huggingface.co/turing - motors/heron - chat - blip - ja - stablelm - base - 7b - v1 - llava - 620k) |
14.51 |
33.26 |
49.09 |
41.51 |
45.72 |
45.44 |
[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing - motors/heron - chat - git - ja - stablelm - base - 7b - v1) |
15.18 |
37.82 |
42.77 |
54.20 |
43.53 |
46.83 |
[llava - jp - 1.3b - v1.0 - 620k](https://huggingface.co/toshi456/llava - jp - 1.3b - v1.0 - 620k) |
12.69 |
44.58 |
51.21 |
41.05 |
45.95 |
44.84 |
[llava - jp - 1.3b - v1.1](https://huggingface.co/toshi456/llava - jp - 1.3b - v1.1) |
13.33 |
44.40 |
50.00 |
51.83 |
48.98 |
50.39 |
[ConvLLaVA - JP - 1.3b - 768](https://huggingface.co/toshi456/ConvLLaVA - JP - 1.3b - 768) |
12.05 |
42.80 |
44.24 |
40.00 |
48.16 |
44.96 |
[ConvLLaVA - JP - 1.3b - 1280](https://huggingface.co/toshi456/ConvLLaVA - JP - 1.3b - 1280) |
11.88 |
43.64 |
38.95 |
44.79 |
41.24 |
42.31 |
Training Dataset
Stage 1 and Stage 2 Pretrain:
- [LLaVA - Pretrain - JA](https://huggingface.co/datasets/turing - motors/LLaVA - Pretrain - JA)
Stage 3 Fine - tuning:
- [LLaVA - v1.5 - Instruct - 620K - JA](https://huggingface.co/datasets/turing - motors/LLaVA - v1.5 - Instruct - 620K - JA)
Acknowledgement
📄 License
This project is licensed under the CC - BY - NC - 4.0 license.