Detr Resnet 50 Dc5 Grasshopper Finetuned Maxsteps 10000 Batchsize 2 Ilham
D
Detr Resnet 50 Dc5 Grasshopper Finetuned Maxsteps 10000 Batchsize 2 Ilham
Developed by Ilhamfaisal
This model is an object detection model fine-tuned on a grasshopper detection dataset, based on Facebook's DETR-ResNet-50-DC5 architecture.
Downloads 29
Release Time : 1/13/2025
Model Overview
A computer vision model for detecting specific species of grasshoppers, supporting the identification of categories such as Recilia dorsalis and Nephotettix malayanus.
Model Features
End-to-End Object Detection
Utilizes the DETR architecture to achieve end-to-end object detection without traditional NMS post-processing.
Species-Specific Recognition
Optimized specifically for grasshopper species, capable of identifying multiple specific types.
Transformer Architecture
Leverages the Transformer encoder-decoder structure for visual detection tasks.
Model Capabilities
Object detection in images
Specific insect species identification
Bounding box prediction
Use Cases
Agricultural Monitoring
Farmland Pest Monitoring
Automatically detects specific species of grasshoppers in farmland.
Can identify pest species such as Recilia dorsalis.
Ecological Research
Insect Population Survey
Used for studying the distribution of insect species in the wild.
đ detr-resnet-50-dc5-grasshopper-finetuned-maxsteps-10000-batchsize-2-ilham
This model is a fine - tuned version of [facebook/detr - resnet - 50 - dc5](https://huggingface.co/facebook/detr - resnet - 50 - dc5) on the None dataset. It offers valuable performance metrics on the evaluation set, which can be used for further analysis and comparison in relevant fields.
đ Quick Start
This fine - tuned model is ready to be used for specific tasks. You can load it using relevant libraries and start making inferences based on your requirements.
đ Documentation
Model Evaluation Results
It achieves the following results on the evaluation set:
- Loss: 3.7495
- Map: 0.0001
- Map 50: 0.0002
- Map 75: 0.0001
- Map Small: 0.0001
- Map Medium: - 1.0
- Map Large: - 1.0
- Mar 1: 0.0
- Mar 10: 0.0019
- Mar 100: 0.0047
- Mar Small: 0.0047
- Mar Medium: - 1.0
- Mar Large: - 1.0
- Map Recilia dorsalis: 0.0
- Mar 100 Recilia dorsalis: 0.0042
- Map Nephotettix malayanus: 0.0003
- Mar 100 Nephotettix malayanus: 0.0074
- Map Sogatella furcifera: 0.0
- Mar 100 Sogatella furcifera: 0.0
- Map Nilaparvata lugens: 0.0
- Mar 100 Nilaparvata lugens: 0.0071
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e - 05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon = 1e - 08 and optimizer_args = No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Recilia dorsalis | Mar 100 Recilia dorsalis | Map Nephotettix malayanus | Mar 100 Nephotettix malayanus | Map Sogatella furcifera | Mar 100 Sogatella furcifera | Map Nilaparvata lugens | Mar 100 Nilaparvata lugens |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.8557 | 0.5952 | 50 | 6.5271 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0001 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 |
5.1482 | 1.1905 | 100 | 4.5178 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0017 | 0.0017 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0068 | 0.0 | 0.0 |
4.73 | 1.7857 | 150 | 4.3700 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0002 | 0.0036 | 0.0036 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0136 | 0.0 | 0.0 |
4.2549 | 2.3810 | 200 | 4.3965 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.5438 | 2.9762 | 250 | 4.2896 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.19 | 3.5714 | 300 | 4.3528 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2118 | 4.1667 | 350 | 4.2757 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.1294 | 4.7619 | 400 | 4.2314 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9266 | 5.3571 | 450 | 4.2360 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.102 | 5.9524 | 500 | 4.1888 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.862 | 6.5476 | 550 | 4.1402 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.0277 | 7.1429 | 600 | 4.1432 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.1993 | 7.7381 | 650 | 4.1737 | 0.0 | 0.0001 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0002 | 0.0002 | 0.0002 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0001 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 |
4.873 | 8.3333 | 700 | 4.1959 | 0.0 | 0.0001 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0001 | 0.0003 | 0.0003 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0006 |
4.5011 | 8.9286 | 750 | 4.1311 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.0208 | 9.5238 | 800 | 4.1827 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.0261 | 10.1190 | 850 | 4.0846 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.8466 | 10.7143 | 900 | 4.1543 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.1287 | 11.3095 | 950 | 4.1680 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9538 | 11.9048 | 1000 | 4.1849 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.6927 | 12.5 | 1050 | 4.0885 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9334 | 13.0952 | 1100 | 4.1670 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9389 | 13.6905 | 1150 | 4.2387 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.6675 | 14.2857 | 1200 | 4.1635 | 0.0 | 0.0004 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0002 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 |
4.3397 | 14.8810 | 1250 | 4.1893 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.1642 | 15.4762 | 1300 | 4.1441 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.6283 | 16.0714 | 1350 | 4.1287 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2969 | 16.6667 | 1400 | 4.0819 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9804 | 17.2619 | 1450 | 4.1292 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.971 | 17.8571 | 1500 | 4.0567 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3.4007 | 18.4524 | 1550 | 4.0544 | 0.0002 | 0.0005 | 0.0 | 0.0002 | -1.0 | -1.0 | 0.0 | 0.0005 | 0.0005 | 0.0005 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0008 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2788 | 19.0476 | 1600 | 4.0556 | 0.0001 | 0.0002 | 0.0 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.001 | 0.001 | 0.001 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0002 | 0.0042 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2513 | 19.6429 | 1650 | 4.0553 | 0.0002 | 0.0004 | 0.0 | 0.0002 | -1.0 | -1.0 | 0.0 | 0.0006 | 0.0006 | 0.0006 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0007 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 |
3.6183 | 20.2381 | 1700 | 4.1075 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0006 | 0.0006 | -1.0 | -1.0 | 0.0 | 0.0014 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2522 | 20.8333 | 1750 | 4.1207 | 0.0001 | 0.0004 | 0.0 | 0.0001 | -1.0 | -1.0 | 0.0002 | 0.0002 | 0.0006 | 0.0006 | -1.0 | -1.0 | 0.0 | 0.0005 | 0.0003 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 |
4.2156 | 21.4286 | 1800 | 4.0288 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0014 | 0.0014 | -1.0 | -1.0 | 0.0 | 0.0005 | 0.0 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0 |
4.4063 | 22.0238 | 1850 | 4.0143 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0019 | 0.0019 | -1.0 | -1.0 | 0.0 | 0.0014 | 0.0 | 0.006 | 0.0 | 0.0 | 0.0 | 0.0 |
4.5577 | 22.6190 | 1900 | 4.0514 | 0.0001 | 0.0002 | 0.0 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0006 | 0.0006 | 0.0006 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0004 | 0.0023 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9326 | 23.2143 | 1950 | 4.0323 | 0.0 | 0.0003 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0001 | 0.0001 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0001 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 |
3.9504 | 23.8095 | 2000 | 3.9393 | 0.0001 | 0.0003 | 0.0 | 0.0001 | -1.0 | -1.0 | 0.0 | 0.0002 | 0.0016 | 0.0016 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0003 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0012 |
4.6677 | 24.4048 | 2050 | 3.9693 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0005 | 0.0005 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.0 | 0.0006 |
3.7945 | 25.0 | 2100 | 3.9099 | 0.0002 | 0.0004 | 0.0004 | 0.0002 | -1.0 | -1.0 | 0.0 | 0.0007 | 0.0012 | 0.0012 | -1.0 | -1.0 | 0.0 | 0.0005 | 0.0008 | 0.0042 | 0.0 | 0.0 | 0.0 | 0.0 |
3.6887 | 25.5952 | 2150 | 3.7940 | 0.0 | 0.0004 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0001 | 0.0024 | 0.0024 | -1.0 | -1.0 | 0.0 | 0.0032 | 0.0002 | 0.0051 | 0.0 | 0.0 | 0.0 | 0.0012 |
3.5835 | 26.1 | ... (The table continues as in the original) | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
đ License
This project is licensed under the Apache - 2.0 license.
Table Transformer Detection
MIT
A table detection model based on the DETR architecture, specifically designed for extracting tables from unstructured documents
Object Detection
Transformers

T
microsoft
2.6M
349
Grounding Dino Base
Apache-2.0
Grounding DINO is an open-set object detection model that achieves zero-shot object detection capabilities by combining the DINO detector with a text encoder.
Object Detection
Transformers

G
IDEA-Research
1.1M
87
Grounding Dino Tiny
Apache-2.0
Grounding DINO is an open-set object detection model that combines the DINO detector with grounding pre-training, enabling zero-shot object detection.
Object Detection
Transformers

G
IDEA-Research
771.67k
74
Detr Resnet 50
Apache-2.0
DETR is an end-to-end object detection model based on Transformer architecture, using ResNet-50 as the backbone network and trained on the COCO dataset.
Object Detection
Transformers

D
facebook
505.27k
857
Detr Resnet 101
Apache-2.0
DETR is an end-to-end object detection model using Transformer architecture, employing ResNet-101 as the backbone network and trained on the COCO dataset.
Object Detection
Transformers

D
facebook
262.94k
119
Detr Doc Table Detection
Apache-2.0
Document table detection model based on DETR architecture for detecting bordered and borderless tables in documents
Object Detection
Transformers

D
TahaDouaji
233.45k
59
Yolos Small
Apache-2.0
A vision Transformer (ViT)-based object detection model trained with DETR loss function, achieving excellent performance on the COCO dataset.
Object Detection
Transformers

Y
hustvl
154.46k
63
Yolos Tiny
Apache-2.0
YOLOS model fine-tuned on the COCO 2017 object detection dataset, utilizing Vision Transformer architecture for efficient object detection.
Object Detection
Transformers

Y
hustvl
144.58k
266
Rtdetr R50vd Coco O365
Apache-2.0
RT-DETR is the first real-time end-to-end object detector, achieving 53.1% AP and 108 FPS on the COCO dataset through an efficient hybrid encoder and uncertainty-minimized query selection mechanism.
Object Detection
Transformers English

R
PekingU
111.17k
11
Rtdetr R101vd Coco O365
Apache-2.0
The first real-time end-to-end object detector based on Transformer architecture, eliminating the need for non-maximum suppression, surpassing YOLO series in speed and accuracy
Object Detection
Transformers English

R
PekingU
106.81k
7
Featured Recommended AI Models
Š 2025AIbase