T5 Small Indonesian Summarization Cased
T
T5 Small Indonesian Summarization Cased
Developed by panggi
A T5-small summarization model fine-tuned for Indonesian language, based on huseinzol05's t5-small-bahasa-summarization-cased model and fine-tuned using the indosum dataset.
Downloads 65
Release Time : 3/2/2022
Model Overview
This model is a T5-small model designed for generating summaries from Indonesian text, capable of compressing long texts into concise summaries.
Model Features
Indonesian Language Optimization
Specially fine-tuned for Indonesian, optimizing the model's summarization capabilities for Indonesian text.
Based on T5 Architecture
Utilizes the T5-small architecture, providing good summarization performance while maintaining a lightweight model.
Fine-tuned with indosum Dataset
Fine-tuned using the indosum Indonesian summarization dataset, enhancing the model's understanding and summarization abilities for Indonesian text.
Model Capabilities
Indonesian Text Summarization
Long Text Compression
Key Information Extraction
Use Cases
News Summarization
News Article Summarization
Automatically compresses long news articles into concise summaries
Generates brief summaries containing key information
Medical Text Processing
Medical Article Summarization
Summarizes long medical-related texts
Extracts key symptoms and treatment information from medical articles
🚀 Indonesian T5 Summarization Small Model
A finetuned T5 small model for Indonesian text summarization, offering efficient and accurate summarization capabilities.
🚀 Quick Start
The t5-small-indonesian-summarization-cased
model is a powerful tool for Indonesian text summarization. It is based on t5-small-bahasa-summarization-cased
by huseinzol05 and finetuned using the indosum dataset.
📦 Installation
To use this model, you need to install the transformers
library. You can install it using the following command:
pip install transformers
💻 Usage Examples
Basic Usage
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("panggi/t5-small-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("panggi/t5-small-indonesian-summarization-cased")
Advanced Usage
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("panggi/t5-small-indonesian-summarization-cased")
model = T5ForConditionalGeneration.from_pretrained("panggi/t5-small-indonesian-summarization-cased")
# https://www.sehatq.com/artikel/apa-itu-dispepsia-fungsional-ketahui-gejala-dan-faktor-risikonya
ARTICLE_TO_SUMMARIZE = "Secara umum, dispepsia adalah kumpulan gejala pada saluran pencernaan seperti nyeri, sensasi terbakar, dan rasa tidak nyaman pada perut bagian atas. Pada beberapa kasus, dispepsia yang dialami seseorang tidak dapat diketahui penyebabnya. Jenis dispepsia ini disebut dengan dispepsia fungsional. Apa saja gejala dispepsia fungsional? Apa itu dispepsia fungsional? Dispepsia fungsional adalah kumpulan gejala tanpa sebab pada saluran pencernaan bagian atas. Gejala tersebut dapat berupa rasa sakit, nyeri, dan tak nyaman pada perut bagian atas atau ulu hati. Penderita dispepsia fungsional juga akan merasakan kenyang lebih cepat dan sensasi perut penuh berkepanjangan. Gejala-gejala tersebut bisa berlangsung selama sebulan atau lebih. Dispepsia ini memiliki nama “fungsional” karena kumpulan gejalanya tidak memiliki penyebab yang jelas. Dilihat dari fungsi dan struktur saluran pencernaan, dokter tidak menemukan hal yang salah. Namun, gejalanya bisa sangat mengganggu dan menyiksa. Dispepsia fungsional disebut juga dengan dispepsia nonulkus. Diperkirakan bahwa 20% masyarakat dunia menderita dispepsia fungsional. Kondisi ini berisiko tinggi dialami oleh wanita, perokok, dan orang yang mengonsumsi obat anti-peradangan nonsteroid (NSAID). Dispepsia fungsional bisa bersifat kronis dan mengganggu kehidupan penderitanya. Namun beruntung, ada beberapa strategi yang bisa diterapkan untuk mengendalikan gejala dispepsia ini. Strategi tersebut termasuk perubahan gaya hidup, obat-obatan, dan terapi.Ragam gejala dispepsia fungsional Gejala dispepsia fungsional dapat bervariasi antara satu pasien dengan pasien lain. Beberapa tanda yang bisa dirasakan seseorang, yaitu: Sensasi terbakar atau nyeri di saluran pencernaan bagian atas Perut kembung Cepat merasa kenyang walau baru makan sedikit Mual Muntah Bersendawa Rasa asam di mulut Penurunan berat badan Tekanan psikologis terkait dengan kondisi yang dialami Apa sebenarnya penyebab dispepsia fungsional? Sebagai penyakit fungsional, dokter mengkategorikan dispepsia ini sebagai penyakit yang tidak diketahui penyebabnya. Hanya saja, beberapa faktor bisa meningkatkan risiko seseorang terkena dispepsia fungsional. Faktor risiko tersebut, termasuk: Alergi terhadap zat tertentu Perubahan mikrobioma usus Infeksi, seperti yang dipicu oleh bakteriHelicobacter pylori Sekresi asam lambung yang tidak normal Peradangan pada saluran pencernaan bagian atas Gangguan pada fungsi lambung untuk mencerna makanan Pola makan tertentu Gaya hidup tidak sehat Stres Kecemasan atau depresi Efek samping pemakaian obat seperti obat antiinflamasi nonsteroid Penanganan untuk dispepsia fungsional Ada banyak pilihan pengobatan untuk dispepsia fungsional. Seperti yang disampaikan di atas, tidak ada penyebab tunggal dispepsia ini yang bisa diketahui. Gejala yang dialami antara satu pasien juga mungkin amat berbeda dari orang lain. Dengan demikian, jenis pengobatan dispepsia fungsional juga akan bervariasi. Beberapa pilihan strategi penanganan untuk dispepsia fungsional, meliputi: 1. Obat-obatan Ada beberapa jenis obat yang mungkin akan diberikan dokter, seperti Obat penetral asam lambung yang disebut penghambat reseptor H2 Obat penghambat produksi asam lambung yang disebut proton pump inhibitors Obat untuk mengendalikan gas di perut yang mengandung simetikon Antidepresan seperti amitriptyline Obat penguat kerongkongan yang disebut agen prokinetik Obat untuk pengosongan isi lambung seperti metoclopramide Antibiotik jika dokter mendeteksi adanya infeksi bakteri H. pylori 2. Anjuran terkait perubahan gaya hidup Selain obat-obatan, dokter akan memberikan rekomendasi perubahan gaya hidup yang harus diterapkan pasien. Tips terkait perubahan gaya hidup termasuk: Makan lebih sering namun dengan porsi yang lebih sedikit Menjauhi makanan berlemak karena memperlambat pengosongan makanan di lambung Menjauhi jenis makanan lain yang memicu gejala dispepsia, seperti makanan pedas, makanan tinggi asam, produk susu, dan produk kafein Menjauhi rokok Dokter juga akan meminta pasien untuk mencari cara untuk mengendalikan stres, tidur dengan kepala lebih tinggi, dan menjalankan usaha untuk mengendalikan berat badan. Apakah penyakit dispepsia itu berbahaya? Dispepsia, termasuk dispepsia fungsional, dapat menjadi kronis dengan gejala yang menyiksa. Jika tidak ditangani, dispepsia tentu dapat berbahaya dan mengganggu kehidupan pasien. Segera hubungi dokter apabila Anda merasakan gejala dispepsia, terlebih jika tidak merespons obat-obatan yang dijual bebas. Catatan dari SehatQ Dispepsia fungsional adalah kumpulan gejala pada saluran pencernaan bagian atas yang tidak diketahui penyebabnya. Dispepsia fungsional dapat ditangani dengan kombinasi obat-obatan dan perubahan gaya hidup. Jika masih memiliki pertanyaan terkait dispepsia fungsional, Anda bisa menanyakan ke dokter di aplikasi kesehatan keluarga SehatQ. Aplikasi SehatQ bisa diunduh gratis di Appstore dan Playstore yang berikan informasi penyakit terpercaya."
# generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
max_length=100,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True)
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary_text)
Output
'Dispepsia fungsional adalah kumpulan gejala tanpa sebab pada saluran pencernaan bagian atas. Gejala tersebut dapat berupa rasa sakit, nyeri, dan tak nyaman pada perut bagian atas. Penderita dispepsia fungsional juga akan merasakan kenyang lebih cepat dan sensasi perut penuh berkepanjangan. Gejala-gejala tersebut bisa berlangsung selama sebulan atau lebih.
📄 Acknowledgement
Thanks to Immanuel Drexel for his article Text Summarization, Extractive, T5, Bahasa Indonesia, Huggingface’s Transformers
Bart Large Cnn
MIT
BART model pre-trained on English corpus, specifically fine-tuned for the CNN/Daily Mail dataset, suitable for text summarization tasks
Text Generation English
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot is a T5-based paraphrasing framework designed to accelerate the training of Natural Language Understanding (NLU) models through high-quality paraphrase generation for data augmentation.
Text Generation
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART is a distilled version of the BART model, specifically optimized for text summarization tasks, significantly improving inference speed while maintaining high performance.
Text Generation English
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
A T5-based model specialized in extracting atomic claims from summary texts, serving as a key component in summary factuality assessment pipelines.
Text Generation
Transformers English

T
Babelscape
666.36k
9
Unieval Sum
UniEval is a unified multidimensional evaluator for automatic evaluation of natural language generation tasks, supporting assessment across multiple interpretable dimensions.
Text Generation
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
A text paraphrasing model fine-tuned based on the PEGASUS architecture, capable of generating sentences with the same meaning but different expressions.
Text Generation
Transformers English

P
tuner007
209.03k
185
T5 Base Korean Summarization
This is a Korean text summarization model based on the T5 architecture, specifically designed for Korean text summarization tasks. It is trained on multiple Korean datasets by fine-tuning the paust/pko-t5-base model.
Text Generation
Transformers Korean

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS is a Transformer-based pretrained model specifically designed for abstractive text summarization tasks.
Text Generation English
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
A dialogue summarization model based on the BART-large architecture, fine-tuned specifically for the SAMSum corpus, suitable for generating dialogue summaries.
Text Generation
Transformers English

B
philschmid
141.28k
258
Kobart Summarization
MIT
A Korean text summarization model based on the KoBART architecture, capable of generating concise summaries of Korean news articles.
Text Generation
Transformers Korean

K
gogamza
119.18k
12
Featured Recommended AI Models