Bart Large Cnn Samsum Rescom Finetuned Resume Summarizer 10 Epoch Tweak Lr 8 100 1
Model Overview
This model is a fine-tuned text summarization model based on BART-large-cnn architecture, specifically optimized for resume summarization tasks
Model Features
High-Quality Summary Generation
Achieved a Rouge1 score of 61.441 on the evaluation set, indicating high-quality summarization
Resume Summary Optimization
Specifically fine-tuned for resume content, suitable for generating career-related summaries
Efficient Training Configuration
Utilized techniques like gradient accumulation and mixed-precision training to optimize training efficiency
Model Capabilities
Text Summarization Generation
Resume Content Refinement
Key Information Extraction
Use Cases
Career Services
Automatic Resume Summarization
Generates concise and professional summaries for job seekers' resumes
Rouge1 score of 61.441, indicating good summarization quality
Human Resources
Candidate Resume Screening
Helps HR quickly browse key information from large volumes of resumes
đ bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-100-1
This model is a fine - tuned version of Ameer05/model-token-repo on an unknown dataset. It can be used for summarization tasks and has achieved certain results on the evaluation set.
đ Quick Start
This model is a fine - tuned version of Ameer05/model-token-repo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6315
- Rouge1: 61.441
- Rouge2: 52.9403
- Rougel: 58.3426
- Rougelsum: 60.8249
đ Documentation
Training and evaluation data
More information needed
Model description
More information needed
Intended uses & limitations
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
No log | 0.91 | 5 | 2.0139 | 53.4301 | 46.6698 | 50.644 | 53.3985 |
No log | 1.91 | 10 | 1.6309 | 61.4629 | 46.6698 | 50.644 | 53.3985 |
No log | 2.91 | 15 | 1.5379 | 61.2938 | 53.7208 | 59.0644 | 60.7381 |
No log | 3.91 | 20 | 1.4470 | 63.2667 | 55.9273 | 60.5112 | 62.7538 |
1.5454 | 4.91 | 25 | 1.4353 | 62.7166 | 54.8328 | 60.0101 | 62.1378 |
1.5454 | 5.91 | 30 | 1.4411 | 59.7469 | 51.9068 | 57.036 | 58.9474 |
1.5454 | 6.91 | 35 | 1.5195 | 64.152 | 57.1447 | 61.362 | 63.5951 |
1.5454 | 7.91 | 40 | 1.6174 | 60.1464 | 51.5654 | 57.1676 | 59.4405 |
0.5429 | 8.91 | 45 | 1.7451 | 61.9696 | 53.6421 | 58.5884 | 61.3286 |
0.5429 | 9.91 | 50 | 1.9081 | 60.3296 | 52.3052 | 57.6518 | 59.7854 |
0.5429 | 10.91 | 55 | 1.9721 | 61.5597 | 51.9027 | 57.1184 | 60.6717 |
0.5429 | 11.91 | 60 | 2.0471 | 61.2222 | 53.9475 | 58.725 | 60.6668 |
0.5429 | 12.91 | 65 | 2.1422 | 60.1915 | 52.0627 | 56.9955 | 59.438 |
0.1506 | 13.91 | 70 | 2.1542 | 61.6915 | 53.045 | 58.1727 | 60.8765 |
0.1506 | 14.91 | 75 | 2.1885 | 59.8069 | 51.6543 | 56.8112 | 59.2055 |
0.1506 | 15.91 | 80 | 2.3146 | 61.695 | 53.2666 | 57.9003 | 61.1108 |
0.1506 | 16.91 | 85 | 2.3147 | 60.4482 | 52.1694 | 57.0649 | 59.7882 |
0.0452 | 17.91 | 90 | 2.1731 | 60.0259 | 51.5046 | 56.7399 | 59.2955 |
0.0452 | 18.91 | 95 | 2.2690 | 60.0534 | 52.4819 | 57.1631 | 59.5056 |
0.0452 | 19.91 | 100 | 2.2990 | 58.0737 | 48.8098 | 54.5684 | 57.3187 |
0.0452 | 20.91 | 105 | 2.2704 | 61.8982 | 53.9077 | 58.6909 | 61.4252 |
0.0267 | 21.91 | 110 | 2.3012 | 62.0174 | 53.5427 | 58.5278 | 61.1921 |
0.0267 | 22.91 | 115 | 2.3569 | 61.6327 | 53.7387 | 58.8908 | 61.1623 |
0.0267 | 23.91 | 120 | 2.3579 | 60.228 | 52.3747 | 58.1448 | 59.7322 |
0.0267 | 24.91 | 125 | 2.3389 | 60.4902 | 51.7935 | 57.0689 | 59.7132 |
0.0267 | 25.91 | 130 | 2.3168 | 58.8469 | 50.3181 | 55.7386 | 58.3598 |
0.0211 | 26.91 | 135 | 2.4147 | 59.4225 | 50.8405 | 56.503 | 58.7221 |
0.0211 | 27.91 | 140 | 2.3631 | 59.7489 | 51.2137 | 57.3204 | 59.3348 |
0.0211 | 28.91 | 145 | 2.3850 | 60.1718 | 51.4176 | 57.2152 | 59.5157 |
0.0211 | 29.91 | 150 | 2.4610 | 60.1433 | 51.433 | 56.6256 | 59.3265 |
0.0175 | 30.91 | 155 | 2.4400 | 58.8345 | 49.7031 | 55.3079 | 57.9236 |
0.0175 | 31.91 | 160 | 2.4506 | 59.209 | 50.1626 | 55.6451 | 58.5791 |
0.0175 | 32.91 | 165 | 2.4316 | 59.7713 | 50.8999 | 56.4235 | 58.9845 |
0.0175 | 33.91 | 170 | 2.2781 | 60.1822 | 51.9435 | 57.4586 | 59.6766 |
0.0175 | 34.91 | 175 | 2.3849 | 58.2328 | 49.2106 | 55.1516 | 57.5072 |
0.0141 | 35.91 | 180 | 2.4872 | 58.4916 | 50.3345 | 55.5991 | 58.1131 |
0.0141 | 36.91 | 185 | 2.4883 | 59.0957 | 49.76 | 55.3567 | 58.076 |
0.0141 | 37.91 | 190 | 2.4327 | 58.091 | 48.8628 | 54.8678 | 57.5406 |
0.0141 | 38.91 | 195 | 2.4998 | 57.7428 | 48.7366 | 54.2166 | 56.7643 |
0.0089 | 39.91 | 200 | 2.4107 | 60.1662 | 51.9832 | 57.1372 | 59.6989 |
0.0089 | 40.91 | 205 | 2.4700 | 58.2159 | 49.3934 | 54.9265 | 57.4126 |
0.0089 | 41.91 | 210 | 2.4833 | 58.7434 | 49.6619 | 55.5239 | 57.9562 |
0.0089 | 42.91 | 215 | 2.4703 | 60.2984 | 51.3168 | 56.9082 | 59.3958 |
0.0062 | 43.91 | 220 | 2.5306 | 60.5455 | 52.1189 | 57.3213 | 60.0232 |
0.0062 | 44.91 | 225 | 2.5181 | 60.2149 | 51.2187 | 56.1935 | 59.3471 |
0.0062 | 45.91 | 230 | 2.4871 | 59.8013 | 51.6114 | 56.0911 | 59.0902 |
0.0062 | 46.91 | 235 | 2.4811 | 58.0271 | 48.9441 | 54.3108 | 57.3647 |
0.0062 | 47.91 | 240 | 2.5290 | 62.5087 | 54.6149 | 59.638 | 62.0455 |
0.0072 | 48.91 | 245 | 2.5194 | 58.7193 | 49.9679 | 55.6517 | 58.1569 |
0.0072 | 49.91 | 250 | 2.5708 | 58.4626 | 49.5257 | 54.5032 | 58.1413 |
0.0072 | 50.91 | 255 | 2.6449 | 58.446 | 49.4625 | 55.1092 | 58.03 |
0.0072 | 51.91 | 260 | 2.5592 | 58.859 | 49.4398 | 55.1503 | 57.9663 |
0.0056 | 52.91 | 265 | 2.5086 | 59.7322 | 51.3051 | 56.5401 | 59.2726 |
0.0056 | 53.91 | 270 | 2.4846 | 57.8603 | 48.2408 | 54.3847 | 57.115 |
0.0056 | 54.91 | 275 | 2.5509 | 58.9506 | 50.045 | 55.6658 | 58.3618 |
0.0056 | 55.91 | 280 | 2.5032 | 60.2524 | 51.8167 | 56.98 | 59.7506 |
0.0056 | 56.91 | 285 | 2.5012 | 60.0596 | 51.4924 | 56.7181 | 59.5037 |
0.0054 | 57.91 | 290 | 2.5176 | 61.0622 | 52.6235 | 57.9317 | 60.5036 |
0.0054 | 58.91 | 295 | 2.5024 | 62.9246 | 54.8544 | 59.9824 | 62.5584 |
0.0054 | 59.91 | 300 | 2.5687 | 62.2602 | 53.9673 | 58.9862 | 61.5837 |
0.0054 | 60.91 | 305 | 2.5890 | 62.5706 | 54.227 | 59.2032 | 62.125 |
0.0036 | 61.91 | 310 | 2.5454 | 62.1565 | 53.2585 | 58.7169 | 61.3943 |
0.0036 | 62.91 | 315 | 2.5629 | 62.8292 | 54.6781 | 59.9889 | 62.254 |
0.0036 | 63.91 | 320 | 2.5581 | 58.8394 | 50.4421 | 56.0742 | 58.1945 |
0.0036 | 64.91 | 325 | 2.5532 | 59.5814 | 51.1335 | 56.5841 | 59.196 |
0.0031 | 65.91 | 330 | 2.5826 | 59.0485 | 50.3992 | 55.5283 | 58.3757 |
0.0031 | 66.91 | 335 | 2.5815 | 61.4832 | 52.7977 | 57.7351 | 60.9888 |
0.0031 | 67.91 | 340 | 2.5865 | 61.7836 | 53.6797 | 58.6743 | 61.3765 |
0.0031 | 68.91 | 345 | 2.6007 | 61.2253 | 52.8781 | 57.7006 | 60.717 |
0.0031 | 69.91 | 350 | 2.6210 | 60.717 | 52.4933 | 57.5089 | 60.4196 |
0.0035 | 70.91 | 355 | 2.6169 | 61.3491 | 53.3932 | 58.2288 | 60.8793 |
0.0035 | 71.91 | 360 | 2.6025 | 62.0101 | 54.0289 | 59.0822 | 61.7202 |
0.0035 | 72.91 | 365 | 2.5705 | 61.2227 | 52.9937 | 58.2493 | 60.6631 |
0.0035 | 73.91 | 370 | 2.5623 | 59.1718 | 50.7827 | 56.1851 | 58.7118 |
0.002 | 74.91 | 375 | 2.5536 | 58.4201 | 49.6923 | 55.0398 | 57.7707 |
0.002 | 75.91 | 380 | 2.5478 | 60.2307 | 51.7503 | 57.3173 | 59.692 |
0.002 | 76.91 | 385 | 2.6039 | 58.7637 | 49.741 | 55.5341 | 58.0784 |
0.002 | 77.91 | 390 | 2.6371 | 59.3929 | 50.6444 | 55.9887 | 58.813 |
0.002 | 78.91 | 395 | 2.6238 | 59.0572 | 50.605 | 55.6631 | 58.4366 |
0.0019 | 79.91 | 400 | 2.5783 | 57.9852 | 49.2588 | 54.822 | 57.4643 |
0.0019 | 80.91 | 405 | 2.5982 | 58.0218 | 49.1651 | 54.9876 | 57.4066 |
0.0019 | 81.91 | 410 | 2.6141 | 60.3133 | 51.5723 | 56.9476 | 59.715 |
0.0019 | 82.91 | 415 | 2.5904 | 60.8199 | 51.8956 | 58.406 | 60.323 |
0.0017 | 83.91 | 420 | 2.5718 | 60.3449 | 51.1433 | 57.6984 | 59.7513 |
0.0017 | 84.91 | 425 | 2.5737 | 60.151 | 51.1986 | 57.3376 | 59.378 |
0.0017 | 85.91 | 430 | 2.5807 | 60.9273 | 52.2469 | 58.2038 | 60.1642 |
0.0017 | 86.91 | 435 | 2.5900 | 60.1846 | 51.6144 | 57.5407 | 59.5109 |
0.0011 | 87.91 | 440 | 2.6066 | 62.0776 | 53.6022 | 59.157 | 61.6201 |
0.0011 | 88.91 | 445 | 2.6231 | 61.8822 | 53.5232 | 58.965 | 61.401 |
0.0011 | 89.91 | 450 | 2.6273 | 60.3358 | 51.9941 | 57.3823 | 59.7729 |
0.0011 | 90.91 | 455 | 2.6194 | 60.0196 | 51.6134 | 57.1357 | 59.4594 |
0.0011 | 91.91 | 460 | 2.6118 | 60.6898 | 52.1328 | 57.3076 | 60.0351 |
0.0015 | 92.91 | 465 | 2.6032 | 61.2119 | 52.5034 | 57.8098 | 60.6634 |
0.0015 | 93.91 | 470 | 2.6040 | 61.4812 | 52.8197 | 57.9668 | 60.8767 |
0.0015 | 94.91 | 475 | 2.6158 | 61.4046 | 52.8905 | 57.8958 | 60.804 |
0.0015 | 95.91 | 480 | 2.6280 | 62.1764 | 53.8521 | 58.8608 | 61.6138 |
0.0012 | 96.91 | 485 | 2.6304 | 62.2028 | 53.8967 | 58.8976 | 61.6409 |
0.0012 | 97.91 | 490 | 2.6328 | 61.7371 | 53.3908 | 58.4107 | 61.1382 |
0.0012 | 98.91 | 495 | 2.6331 | 61.441 | 52.9403 | 58.3426 | 60.8249 |
0.0012 | 99.91 | 500 | 2.6315 | 61.441 | 52.9403 | 58.3426 | 60.8249 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.10.3
Bart Large Cnn
MIT
BART model pre-trained on English corpus, specifically fine-tuned for the CNN/Daily Mail dataset, suitable for text summarization tasks
Text Generation English
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot is a T5-based paraphrasing framework designed to accelerate the training of Natural Language Understanding (NLU) models through high-quality paraphrase generation for data augmentation.
Text Generation
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART is a distilled version of the BART model, specifically optimized for text summarization tasks, significantly improving inference speed while maintaining high performance.
Text Generation English
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
A T5-based model specialized in extracting atomic claims from summary texts, serving as a key component in summary factuality assessment pipelines.
Text Generation
Transformers English

T
Babelscape
666.36k
9
Unieval Sum
UniEval is a unified multidimensional evaluator for automatic evaluation of natural language generation tasks, supporting assessment across multiple interpretable dimensions.
Text Generation
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
A text paraphrasing model fine-tuned based on the PEGASUS architecture, capable of generating sentences with the same meaning but different expressions.
Text Generation
Transformers English

P
tuner007
209.03k
185
T5 Base Korean Summarization
This is a Korean text summarization model based on the T5 architecture, specifically designed for Korean text summarization tasks. It is trained on multiple Korean datasets by fine-tuning the paust/pko-t5-base model.
Text Generation
Transformers Korean

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS is a Transformer-based pretrained model specifically designed for abstractive text summarization tasks.
Text Generation English
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
A dialogue summarization model based on the BART-large architecture, fine-tuned specifically for the SAMSum corpus, suitable for generating dialogue summaries.
Text Generation
Transformers English

B
philschmid
141.28k
258
Kobart Summarization
MIT
A Korean text summarization model based on the KoBART architecture, capable of generating concise summaries of Korean news articles.
Text Generation
Transformers Korean

K
gogamza
119.18k
12
Featured Recommended AI Models
Š 2025AIbase