🚀 IT5 Cased Small Efficient EL32 for News Summarization ✂️🗞️ 🇮🇹
This model is designed for Italian news summarization, leveraging an optimized architecture to improve performance and reduce parameters.
This repository contains the checkpoint for the IT5 Cased Small Efficient EL32 model fine-tuned on news summarization on the Fanpage and Il Post corpora as part of the experiments of the paper IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation by Gabriele Sarti and Malvina Nissim.
Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an optimized model architecture to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model.
A comprehensive overview of other released materials is provided in the gsarti/it5 repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
🚀 Quick Start
✨ Features
- Optimized Architecture: Adopts a different vocabulary for cased text generation and an optimized architecture to enhance performance and reduce parameters.
- Fine-tuned for News Summarization: Fine-tuned on the Fanpage and Il Post corpora for Italian news summarization.
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
from transformers import pipelines
newsum = pipeline("summarization", model='it5/it5-efficient-small-el32-news-summarization')
newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.")
>>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}]
Advanced Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-news-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-news-summarization")
📚 Documentation
Refer to the paper IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation for additional details concerning the reported scores and the evaluation approach.
🔧 Technical Details
Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an optimized model architecture to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model.
📄 License
The model is released under the Apache-2.0 license.
Citation
If you use this model in your research, please cite our work as:
@article{sarti-nissim-2022-it5,
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint 2203.03759},
url={https://arxiv.org/abs/2203.03759},
year={2022},
month={mar}
}