🚀 ccdv/lsg-bart-base-16384-arxiv
This model is a fine - tuned version of ccdv/lsg-bart-base-4096-arxiv on the scientific_papers arxiv dataset. It can handle 16384 long sequences and has achieved certain results on the test set.
🚀 Quick Start
Transformers >= 4.36.1
This model relies on a custom modeling file, you need to add trust_remote_code=True
See #13467
LSG ArXiv paper.
Github/conversion script is available at this link.
Basic Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384-arxiv", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-16384-arxiv", trust_remote_code=True)
text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(
text,
truncation=True,
max_length=64,
no_repeat_ngram_size=7,
num_beams=2,
early_stopping=True
)
✨ Features
📚 Documentation
Model Details
This model is a fine - tuned version of ccdv/lsg-bart-base-4096-arxiv on the scientific_papers arxiv dataset. The model is converted to handle 16384 long sequences and fine - tuned accordingly during 1 epoch. It achieves the following results on the test set:
Length |
Global tokens |
Fine - tuning |
Block Size |
Sparsity |
Connexions |
R1 |
R2 |
RL |
RLsum |
16384 |
64 |
Full |
256 |
0 |
768 |
48.74 |
20.88 |
28.50 |
44.23 |
16384 |
1 |
Full |
256 |
0 |
768 |
48.66 |
20.92 |
28.50 |
44.18 |
16384 |
64 |
Global only |
256 |
0 |
768 |
48.08 |
20.42 |
28.00 |
43.65 |
16384 |
1 |
None |
256 |
0 |
768 |
47.03 |
20.19 |
28.26 |
42.69 |
Reference model:
Length |
Global tokens |
Fine - tuning |
Block Size |
Sparsity |
Connexions |
R1 |
R2 |
RL |
RLsum |
4096 |
1 |
- |
256 |
0 |
768 |
46.65 |
18.91 |
26.90 |
42.18 |
Model description
The model relies on Local - Sparse - Global attention to handle long sequences:

The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). The model is warm - started from ccdv/lsg-bart-base-4096-arxiv, converted to handle long sequences (encoder only) and fine - tuned.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e - 05
- train_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
Generate hyperparameters
The following hyperparameters were used during generation:
- dataset_name: scientific_papers
- dataset_config_name: arxiv
- eval_batch_size: 4
- eval_samples: 6440
- early_stopping: True
- ignore_pad_token_for_loss: True
- length_penalty: 2.0
- max_length: 320
- min_length: 32
- num_beams: 5
- no_repeat_ngram_size: None
- seed: 123
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.1+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
Property |
Details |
Model Type |
Fine - tuned version of ccdv/lsg - bart - base - 4096 - arxiv |
Training Data |
scientific_papers arxiv |