đ ccdv/lsg-bart-base-4096-mediasum
This model is a fine - tuned version of ccdv/lsg-bart-base-4096 on the ccdv/mediasum roberta_prepended dataset, designed for text summarization tasks.
đ Quick Start
Transformers >= 4.36.1
This model relies on a custom modeling file, you need to add trust_remote_code=True
See #13467
LSG ArXiv paper.
Github/conversion script is available at this link.
đģ Usage Examples
Basic Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-mediasum", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-mediasum", trust_remote_code=True)
text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(
text,
truncation=True,
max_length=64,
no_repeat_ngram_size=7,
num_beams=2,
early_stopping=True
)
đ Documentation
Model Performance
This model achieves the following results on the test set:
Length |
Sparse Type |
Block Size |
Sparsity |
Connexions |
R1 |
R2 |
RL |
RLsum |
4096 |
Local |
256 |
0 |
768 |
35.16 |
18.13 |
31.54 |
32.20 |
4096 |
Local |
128 |
0 |
384 |
34.16 |
17.61 |
30.75 |
31.41 |
4096 |
Pooling |
128 |
4 |
644 |
34.52 |
17.71 |
31.01 |
31.67 |
4096 |
Stride |
128 |
4 |
644 |
35.05 |
18.11 |
31.47 |
32.13 |
4096 |
Block Stride |
128 |
4 |
644 |
34.72 |
17.81 |
31.13 |
31.82 |
4096 |
Norm |
128 |
4 |
644 |
34.75 |
17.86 |
31.10 |
31.77 |
4096 |
LSH |
128 |
4 |
644 |
34.54 |
17.81 |
31.05 |
31.71 |
With smaller block size (lower ressources):
Length |
Sparse Type |
Block Size |
Sparsity |
Connexions |
R1 |
R2 |
RL |
RLsum |
4096 |
Local |
64 |
0 |
192 |
32.55 |
16.66 |
29.36 |
30.00 |
4096 |
Local |
32 |
0 |
96 |
30.98 |
15.41 |
27.84 |
28.46 |
4096 |
Pooling |
32 |
4 |
160 |
31.84 |
16.02 |
28.68 |
29.30 |
4096 |
Stride |
32 |
4 |
160 |
32.67 |
16.68 |
29.47 |
30.10 |
4096 |
Block Stride |
32 |
4 |
160 |
32.51 |
16.64 |
29.33 |
29.94 |
4096 |
Norm |
32 |
4 |
160 |
32.44 |
16.48 |
29.20 |
29.79 |
4096 |
LSH |
32 |
4 |
160 |
31.79 |
16.04 |
28.67 |
29.31 |
Model description
The model relies on Local - Sparse - Global attention to handle long sequences:

The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers).
The model is warm started from BART - base, converted to handle long sequences (encoder only) and fine tuned.
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0
Generate hyperparameters
The following hyperparameters were used during generation:
- dataset_name: ccdv/mediasum
- dataset_config_name: roberta_prepended
- eval_batch_size: 8
- eval_samples: 10000
- early_stopping: True
- ignore_pad_token_for_loss: True
- length_penalty: 2.0
- max_length: 128
- min_length: 3
- num_beams: 5
- no_repeat_ngram_size: None
- seed: 123
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.1+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
đ§ Technical Details
Intended uses & limitations
More information needed