đ Spanish NER in Flair (large model)
This is a large 4 - class NER model for Spanish integrated with Flair. It offers high - quality named entity recognition for Spanish text, leveraging advanced embedding techniques.
F1 - Score: 90.54 (CoNLL - 03 Spanish)
⨠Features
This model predicts 4 tags:
tag |
meaning |
PER |
person name |
LOC |
location name |
ORG |
organization name |
MISC |
other name |
It is based on document - level XLM - R embeddings and FLERT.
đ Quick Start
Prerequisites
Requires: Flair (pip install flair
)
đģ Usage Examples
Basic Usage
from flair.data import Sentence
from flair.models import SequenceTagger
tagger = SequenceTagger.load("flair/ner-spanish-large")
sentence = Sentence("George Washington fue a Washington")
tagger.predict(sentence)
print(sentence)
print('The following NER tags are found:')
for entity in sentence.get_spans('ner'):
print(entity)
This yields the following output:
Span [1,2]: "George Washington" [â Labels: PER (1.0)]
Span [5]: "Washington" [â Labels: LOC (1.0)]
So, the entities "George Washington" (labeled as a person) and "Washington" (labeled as a location) are found in the sentence "George Washington fue a Washington".
đ§ Technical Details
Training: Script to train this model
The following Flair script was used to train this model:
import torch
from flair.datasets import CONLL_03_SPANISH
corpus = CONLL_03_SPANISH()
tag_type = 'ner'
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
from flair.embeddings import TransformerWordEmbeddings
embeddings = TransformerWordEmbeddings(
model='xlm-roberta-large',
layers="-1",
subtoken_pooling="first",
fine_tune=True,
use_context=True,
)
from flair.models import SequenceTagger
tagger = SequenceTagger(
hidden_size=256,
embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type='ner',
use_crf=False,
use_rnn=False,
reproject_embeddings=False,
)
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
from torch.optim.lr_scheduler import OneCycleLR
trainer.train('resources/taggers/ner-spanish-large',
learning_rate=5.0e-6,
mini_batch_size=4,
mini_batch_chunk_size=1,
max_epochs=20,
scheduler=OneCycleLR,
embeddings_storage_mode='none',
weight_decay=0.,
)
đ License
No license information provided in the original document.
đ Documentation
Cite
Please cite the following paper when using this model.
@misc{schweter2020flert,
title={FLERT: Document-Level Features for Named Entity Recognition},
author={Stefan Schweter and Alan Akbik},
year={2020},
eprint={2011.06993},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Issues?
The Flair issue tracker is available here.