Sv Core News Sm
Swedish small natural language processing model provided by spaCy, optimized for CPU, including complete NLP pipeline such as tokenization, part-of-speech tagging, and dependency parsing
Downloads 87
Release Time : 5/2/2022
Model Overview
This is a small natural language processing model for Swedish, trained on the Universal Dependencies corpus, supporting core NLP tasks such as part-of-speech tagging, named entity recognition, and dependency parsing.
Model Features
CPU Optimization
Specifically optimized for CPU usage scenarios, suitable for resource-constrained environments
Complete NLP Pipeline
Includes a full set of natural language processing components from tokenization to named entity recognition
High-Accuracy Part-of-Speech Tagging
Part-of-speech tagging accuracy reaches 95.11% (UPOS) and 93.52% (XPOS)
Rich Morphological Analysis
Supports detailed morphological feature analysis for Swedish, with an accuracy of 94.07%
Model Capabilities
Text Tokenization
Part-of-Speech Tagging
Morphological Analysis
Dependency Parsing
Named Entity Recognition
Lemmatization
Sentence Boundary Detection
Use Cases
Text Processing
Swedish Text Analysis
Performs grammatical analysis and structural parsing of Swedish text
Can identify grammatical relationships between sentence components
Information Extraction
Extracts named entities from Swedish text
NER F-score reaches 0.749
Linguistic Applications
Swedish Morphology Research
Analyzes morphological changes in Swedish vocabulary
Morphological feature accuracy of 94.07%
tags:
- spacy
- token-classification language:
- sv license: cc-by-sa-4.0 model-index:
- name: sv_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision type: precision value: 0.8002766252
- name: NER Recall type: recall value: 0.703892944
- name: NER F Score type: f_score value: 0.7489967638
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy type: accuracy value: 0.9351842401
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy type: accuracy value: 0.9511074819
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy type: accuracy value: 0.9406961315
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy type: accuracy value: 0.9489639686
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS) type: f_score value: 0.818598856
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS) type: f_score value: 0.7672877612
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score type: f_score value: 0.9368318756
- task:
name: NER
type: token-classification
metrics:
Details: https://spacy.io/models/sv#sv_core_news_sm
Swedish pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
Feature | Description |
---|---|
Name | sv_core_news_sm |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD Swedish Talbanken v2.8 (Nivre, Joakim; Smith, Aaron) Stockholm-Umeå Corpus (SUC) v3.0 (Språkbanken) |
License | CC BY-SA 4.0 |
Author | Explosion |
Label Scheme
View label scheme (381 labels for 4 components)
Component | Labels |
---|---|
tagger |
AB , AB|AN , AB|KOM , AB|POS , AB|SMS , AB|SUV , DT|NEU|SIN|DEF , DT|NEU|SIN|IND , DT|NEU|SIN|IND/DEF , DT|UTR/NEU|PLU|DEF , DT|UTR/NEU|PLU|IND , DT|UTR/NEU|PLU|IND/DEF , DT|UTR/NEU|SIN/PLU|IND , DT|UTR/NEU|SIN|DEF , DT|UTR/NEU|SIN|IND , DT|UTR|SIN|DEF , DT|UTR|SIN|IND , DT|UTR|SIN|IND/DEF , HA , HD|NEU|SIN|IND , HD|UTR/NEU|PLU|IND , HD|UTR|SIN|IND , HP|-|-|- , HP|NEU|SIN|IND , HP|UTR/NEU|PLU|IND , HP|UTR|SIN|IND , HS|DEF , IE , IN , JJ , JJ|AN , JJ|KOM|UTR/NEU|SIN/PLU|IND/DEF|NOM , JJ|POS|MAS|SIN|DEF|GEN , JJ|POS|MAS|SIN|DEF|NOM , JJ|POS|NEU|SIN|IND/DEF|NOM , JJ|POS|NEU|SIN|IND|NOM , JJ|POS|UTR/NEU|PLU|IND/DEF|GEN , JJ|POS|UTR/NEU|PLU|IND/DEF|NOM , JJ|POS|UTR/NEU|PLU|IND|NOM , JJ|POS|UTR/NEU|SIN/PLU|IND/DEF|NOM , JJ|POS|UTR/NEU|SIN|DEF|NOM , JJ|POS|UTR|-|-|SMS , JJ|POS|UTR|SIN|IND/DEF|NOM , JJ|POS|UTR|SIN|IND|GEN , JJ|POS|UTR|SIN|IND|NOM , JJ|SUV|MAS|SIN|DEF|NOM , JJ|SUV|UTR/NEU|PLU|DEF|NOM , JJ|SUV|UTR/NEU|SIN/PLU|DEF|NOM , JJ|SUV|UTR/NEU|SIN/PLU|IND|NOM , KN , MAD , MID , NN , NN|-|-|-|- , NN|AN , NN|NEU|-|-|SMS , NN|NEU|PLU|DEF|GEN , NN|NEU|PLU|DEF|NOM , NN|NEU|PLU|IND|GEN , NN|NEU|PLU|IND|NOM , NN|NEU|SIN|DEF|GEN , NN|NEU|SIN|DEF|NOM , NN|NEU|SIN|IND , NN|NEU|SIN|IND|GEN , NN|NEU|SIN|IND|NOM , NN|SMS , NN|UTR|-|-|- , NN|UTR|-|-|SMS , NN|UTR|PLU|DEF|GEN , NN|UTR|PLU|DEF|NOM , NN|UTR|PLU|IND|GEN , NN|UTR|PLU|IND|NOM , NN|UTR|SIN|DEF|GEN , NN|UTR|SIN|DEF|NOM , NN|UTR|SIN|IND|GEN , NN|UTR|SIN|IND|NOM , PAD , PC|PRF|NEU|SIN|IND|NOM , PC|PRF|UTR/NEU|PLU|IND/DEF|GEN , PC|PRF|UTR/NEU|PLU|IND/DEF|NOM , PC|PRF|UTR/NEU|SIN|DEF|NOM , PC|PRF|UTR|SIN|IND|NOM , PC|PRS|UTR/NEU|SIN/PLU|IND/DEF|NOM , PL , PM , PM|GEN , PM|NOM , PM|SMS , PN|MAS|SIN|DEF|SUB/OBJ , PN|NEU|SIN|DEF , PN|NEU|SIN|DEF|SUB/OBJ , PN|NEU|SIN|IND|SUB/OBJ , PN|UTR/NEU|PLU|DEF|OBJ , PN|UTR/NEU|PLU|DEF|SUB , PN|UTR/NEU|PLU|DEF|SUB/OBJ , PN|UTR/NEU|PLU|IND|SUB/OBJ , PN|UTR/NEU|SIN/PLU|DEF|OBJ , PN|UTR|PLU|DEF|OBJ , PN|UTR|PLU|DEF|SUB , PN|UTR|SIN|DEF|NOM , PN|UTR|SIN|DEF|OBJ , PN|UTR|SIN|DEF|SUB , PN|UTR|SIN|DEF|SUB/OBJ , PN|UTR|SIN|IND|NOM , PN|UTR|SIN|IND|SUB , PN|UTR|SIN|IND|SUB/OBJ , PP , PS|NEU|SIN|DEF , PS|UTR/NEU|PLU|DEF , PS|UTR/NEU|SIN/PLU|DEF , PS|UTR|SIN|DEF , RG|NEU|SIN|IND|NOM , RG|NOM , RG|SMS , RG|UTR|SIN|IND|NOM , RO|MAS|SIN|IND/DEF|NOM , RO|NOM , SN , UO , VB|AN , VB|IMP|AKT , VB|IMP|SFO , VB|INF|AKT , VB|INF|SFO , VB|KON|PRS|AKT , VB|KON|PRT|AKT , VB|PRS|AKT , VB|PRS|SFO , VB|PRT|AKT , VB|PRT|SFO , VB|SUP|AKT , VB|SUP|SFO , _SP |
morphologizer |
Case=Nom|Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , POS=ADP , Case=Nom|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , POS=PUNCT , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Prs , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , Abbr=Yes|POS=ADV , POS=SCONJ , POS=ADV , Case=Nom|Definite=Ind|Gender=Com|NumType=Card|Number=Sing|POS=NUM , Mood=Ind|POS=AUX|Tense=Pres|VerbForm=Fin|Voice=Act , POS=PART , POS=VERB|VerbForm=Inf , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Number=Plur|POS=DET|PronType=Tot , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Number=Plur|POS=ADJ , Case=Nom|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=CCONJ , Definite=Def|Number=Plur|POS=DET|PronType=Art , POS=PRON|PronType=Rel , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Degree=Pos|POS=ADV , Definite=Def|Number=Plur|POS=DET|PronType=Dem , Case=Nom|Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Def|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , POS=VERB|VerbForm=Sup|Voice=Act , Case=Nom|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , POS=PART|Polarity=Neg , Case=Nom|Degree=Pos|POS=ADJ , Case=Gen|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Degree=Cmp|POS=ADV , POS=VERB|VerbForm=Inf|Voice=Pass , Case=Nom|Definite=Ind|Degree=Pos|Number=Plur|POS=ADJ , Case=Nom|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Degree=Sup|POS=ADV , Case=Nom|NumType=Card|POS=NUM , Abbr=Yes|POS=NOUN , Case=Nom|Definite=Def|Degree=Sup|POS=ADJ , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Act , POS=VERB|VerbForm=Inf|Voice=Act , Case=Nom|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin , Case=Gen|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=AUX|VerbForm=Inf|Voice=Act , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Nom|Number=Plur|POS=ADJ|Tense=Past|VerbForm=Part , POS=AUX|VerbForm=Sup|Voice=Act , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Rcp , POS=SPACE , POS=VERB|VerbForm=Sup|Voice=Pass , Mood=Ind|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Case=Nom|Degree=Cmp|POS=ADJ , Definite=Ind|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Definite=Ind|POS=DET|PronType=Ind , Case=Nom|Definite=Def|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Case=Nom|POS=ADJ|Tense=Pres|VerbForm=Part , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Ind , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Acc|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Definite=Def|Gender=Com|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Def|Number=Plur|POS=PRON|PronType=Dem , Definite=Def|Number=Plur|POS=PRON|Poss=Yes|PronType=Prs , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Nom|Definite=Def|Degree=Sup|Number=Plur|POS=ADJ , Case=Nom|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Gender=Com|Number=Sing|POS=DET|PronType=Tot , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Dem , Case=Gen|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , POS=NOUN , Case=Nom|POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Number=Plur|POS=PRON|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Definite=Ind|Number=Plur|POS=PRON|PronType=Ind , Definite=Def|POS=PRON|Poss=Yes|PronType=Ind , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , Gender=Com|POS=NOUN , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Tot , Case=Gen|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Case=Acc|Definite=Def|POS=PRON|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Prs , Case=Nom|POS=PROPN , Case=Nom|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Case=Nom|Definite=Def|Gender=Com|Number=Plur|POS=PRON|PronType=Prs , Definite=Def|Number=Plur|POS=DET|PronType=Prs , Case=Gen|Number=Plur|POS=ADJ|Tense=Past|VerbForm=Part , Case=Acc|Definite=Def|Gender=Com|Number=Plur|POS=PRON|PronType=Prs , Definite=Ind|Number=Plur|POS=PRON|PronType=Rel , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin , Definite=Ind|Number=Plur|POS=PRON|PronType=Int , Number=Plur|POS=DET|PronType=Ind , Case=Gen|POS=PROPN , POS=PROPN , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Int , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Tot , Gender=Neut|POS=NOUN , Case=Gen|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Definite=Ind|Number=Plur|POS=DET|PronType=Int , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Neg , POS=VERB|VerbForm=Sup , Case=Gen|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Case=Nom|Definite=Ind|Gender=Neut|NumType=Card|Number=Sing|POS=NUM , Foreign=Yes|POS=NOUN , Foreign=Yes|POS=ADJ , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Number=Plur|POS=DET|PronType=Ind , POS=SYM , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Definite=Def|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Int , Case=Nom|Definite=Ind|Degree=Sup|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Dem , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Neg , Mood=Sub|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Degree=Pos|Gender=Com|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Number=Plur|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Prs , Definite=Ind|POS=DET|PronType=Prs , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Rel , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Definite=Def|Number=Plur|POS=PRON|Poss=Yes|PronType=Ind , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Prs , Abbr=Yes|POS=ADJ , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Rel , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Rel , NumType=Card|POS=NUM , POS=INTJ , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Int , Degree=Sup|POS=ADV|Polarity=Neg , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Int , POS=ADV|Polarity=Neg , Definite=Ind|Number=Sing|POS=DET|PronType=Ind , POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Case=Gen|Definite=Def|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Tot , Gender=Neut|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Neg , Case=Nom|Gender=Masc|Number=Sing|POS=ADJ , Definite=Ind|Number=Plur|POS=DET|PronType=Neg , Case=Nom|Definite=Def|Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Definite=Def|Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Neg , Gender=Com|Number=Sing|POS=DET|PronType=Prs , Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Pass , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Ind , Case=Acc|Definite=Def|POS=PRON|PronType=Ind , Foreign=Yes|POS=ADP , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Dem , Abbr=Yes|Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Act , Mood=Sub|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Rel , Foreign=Yes|POS=CCONJ , POS=DET|PronType=Art , Definite=Ind|Number=Sing|POS=DET|PronType=Prs , Definite=Ind|Number=Plur|POS=DET|PronType=Tot , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Rel , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Gen|Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Degree=Pos|POS=ADV|Polarity=Neg , Mood=Sub|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=PRON|PronType=Ind , Definite=Ind|POS=DET|PronType=Neg , Definite=Ind|Number=Plur|POS=PRON|PronType=Neg , POS=CCONJ|Polarity=Neg , Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Definite=Def|Number=Plur|POS=DET|PronType=Tot , Mood=Imp|POS=AUX|VerbForm=Fin|Voice=Act , Foreign=Yes|POS=ADV , Definite=Def|POS=PRON|Poss=Yes|PronType=Rcp , Case=Acc|Definite=Def|POS=PRON|Polarity=Neg|PronType=Ind |
parser |
ROOT , acl , acl:cleft , acl:relcl , advcl , advmod , amod , appos , aux , aux:pass , case , cc , ccomp , compound:prt , conj , cop , csubj , dep , det , dislocated , expl , fixed , flat:name , iobj , mark , nmod , nmod:poss , nsubj , nsubj:pass , nummod , obj , obl , obl:agent , parataxis , punct , xcomp |
ner |
EVN , LOC , MSR , OBJ , ORG , PRS , TME , WRK |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.99 |
TOKEN_P |
99.95 |
TOKEN_R |
99.96 |
TOKEN_F |
99.95 |
TAG_ACC |
93.52 |
POS_ACC |
95.11 |
MORPH_ACC |
94.07 |
MORPH_MICRO_P |
96.02 |
MORPH_MICRO_R |
95.75 |
MORPH_MICRO_F |
95.88 |
SENTS_P |
91.81 |
SENTS_R |
95.63 |
SENTS_F |
93.68 |
DEP_UAS |
81.86 |
DEP_LAS |
76.73 |
LEMMA_ACC |
94.90 |
ENTS_P |
80.03 |
ENTS_R |
70.39 |
ENTS_F |
74.90 |
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models