Tr Core News Lg
Large-scale Turkish natural language processing pipeline, including tokenization, POS tagging, morphological analysis, lemmatization, dependency parsing, and named entity recognition.
Downloads 94
Release Time : 11/3/2022
Model Overview
This is a large spaCy model for Turkish, providing comprehensive natural language processing capabilities, including POS tagging, morphological analysis, lemmatization, dependency parsing, and named entity recognition tasks.
Model Features
Comprehensive Turkish processing capabilities
Supports various tasks for Turkish including POS tagging, morphological analysis, lemmatization, syntactic analysis, and named entity recognition
High-performance annotation
Achieves an F1 score of 0.89 in named entity recognition tasks and a POS tagging accuracy of 0.91
Rich training data sources
Integrates multiple high-quality datasets including UD Turkish BOUN, Turkish Wiki NER dataset, and PANX/WikiANN
Model Capabilities
POS tagging
Morphological analysis
Lemmatization
Dependency parsing
Named entity recognition
Sentence boundary detection
Use Cases
Text analysis
Turkish text processing
Performs POS tagging and morphological analysis on Turkish text
POS tagging accuracy 91.19%, morphological analysis accuracy 89.13%
Information extraction
Named entity recognition
Identifies entities such as person names, locations, and organizations from Turkish text
F1 score reaches 88.90%
🚀 tr_core_news_lg
This is a large-sized Turkish pipeline for TrSpaCy. It includes components such as tok2vec, tagger, morphologizer, lemmatizer, parser, and ner, which can be used for various natural language processing tasks in Turkish.
✨ Features
- A large-sized Turkish pipeline for TrSpaCy.
- Components: tok2vec, tagger, morphologizer, lemmatizer, parser, ner.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | tr_core_news_lg |
Version | 3.4.2 |
spaCy Compatibility | >=3.4.2,<3.5.0 |
Default Pipeline | tok2vec , tagger , morphologizer , trainable_lemmatizer , parser |
Components | tok2vec , tagger , morphologizer , trainable_lemmatizer , parser |
Vectors | -1 keys, 200000 unique vectors (300 dimensions) |
Sources | UD Turkish BOUN (Türk, Utku; Atmaca, Furkan; Özateş, Şaziye Betül; Berk, Gözde; Bedir, Seyyit Talha; Köksal, Abdullatif; Öztürk Başaran, Balkız; Güngör, Tunga; Özgür, Arzucan) Turkish Wiki NER dataset (Duygu Altinok, Co-one Istanbul) PANX/WikiANN (Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, Heng Ji) Large-sized Turkish Floret word vectors (MC4 corpus) (Duygu Altinok) |
License | cc-by-sa-4.0 |
Author | Duygu Altinok |
Label Scheme
View label scheme (1552 labels for 3 components)
Component | Labels |
---|---|
tagger |
ADP , ADV , ANum , ANum_Adj , ANum_Ness , ANum_Noun , ANum_With , ANum_Zero , Abr , Abr_With , Adj , Adj_Ness , Adj_With , Adj_Without , Adj_Zero , Adv , Adverb , Adverb_Adverb , Adverb_Noun , Adverb_Zero , Conj , Conj_Conj , DET , Demons , Demons_Zero , Det , Det_Zero , Dup , Interj , NAdj , NAdj_Aux , NAdj_Ness , NAdj_Noun , NAdj_Rel , NAdj_Verb , NAdj_With , NAdj_Without , NAdj_Zero , NNum , NNum_Rel , NNum_Zero , NOUN , Neg , Ness , Noun , Noun_Ness , Noun_Noun , Noun_Rel , Noun_Since , Noun_Verb , Noun_With , Noun_With_Ness , Noun_With_Verb , Noun_With_Zero , Noun_Without , Noun_Zero , PCAbl , PCAbl_Rel , PCAcc , PCDat , PCDat_Zero , PCGen , PCIns , PCIns_Zero , PCNom , PCNom_Adj , PCNom_Noun , PCNom_Zero , PRON , PUNCT , Pers , Pers_Ness , Pers_Pers , Pers_Rel , Pers_Zero , Postp , Prop , Prop_Conj , Prop_Rel , Prop_Since , Prop_With , Prop_Zero , Punc , Punc_Noun_Ness , Punc_Noun_Rel , Quant , Quant_Zero , Ques , Ques_Zero , Reflex , Reflex_Zero , Rel , SYM , Since , Since_Since , Verb , Verb_Conj , Verb_Ness , Verb_Noun , Verb_Verb , Verb_With , Verb_Zero , With , Without , Without_Zero , Zero |
morphologizer |
NumType=Card|POS=NUM , Aspect=Perf|Case=Loc|Mood=Ind|Number=Plur,Sing|Number[psor]=Sing|POS=NOUN|Person=1,3|Person[psor]=3|Tense=Pres , POS=PUNCT , POS=ADV , POS=NOUN , Case=Nom|Number=Sing|POS=ADJ|Person=3 , POS=DET , Case=Loc|Number=Sing|POS=VERB|Person=1 , Case=Nom|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Number=Sing|POS=VERB|Person=3 , POS=ADJ , Aspect=Perf|Case=Nom|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Pos|Tense=Past|VerbForm=Part , Case=Gen|Number=Sing|POS=NOUN|Person=3 , POS=PRON , Case=Nom|Number=Sing|POS=NOUN|Person=3 , Aspect=Perf|Case=Acc|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Pos|Tense=Past|VerbForm=Part , POS=VERB|Polarity=Pos|Tense=Pres|VerbForm=Part , Case=Acc|Number=Plur|POS=NOUN|Person=3 , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=3|Tense=Past , Case=Nom|Number=Sing|POS=PROPN|Person=3 , Case=Dat|Number=Sing|POS=PROPN|Person=3 , POS=VERB|Polarity=Pos , Case=Acc|Number=Sing|POS=VERB|Person=3|Polarity=Pos , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Past , Aspect=Prog|Evident=Fh|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Past , Case=Abl|Number=Sing|POS=ADJ|Person=3 , Case=Nom|Number=Plur|POS=NOUN|Person=3 , Case=Loc|Number=Plur|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , POS=INTJ , Case=Abl|Number=Plur|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Ins|Number=Sing|POS=PROPN|Person=3 , Case=Loc|Number=Sing|POS=PROPN|Person=3 , Case=Acc|Number=Sing|POS=NOUN|Person=3 , Aspect=Imp|POS=VERB|Polarity=Pos|Tense=Fut|VerbForm=Part , Case=Nom|Number=Sing|POS=PRON|Person=3 , POS=CCONJ , Case=Nom|Number=Plur|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Nom|Mood=Imp|Number=Sing|POS=VERB|Person=3|Polarity=Pos|VerbForm=Conv|Voice=Cau , Case=Dat|Number=Sing|Number[psor]=Plur|POS=ADJ|Person=3|Person[psor]=1 , Aspect=Prog|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Pres , Case=Gen|Number=Sing|POS=PROPN|Person=3 , Case=Abl|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Nom|Number=Sing|POS=ADP|Person=3 , Case=Dat|Number=Plur|POS=NOUN|Person=3 , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Past|Voice=Pass , Case=Nom|POS=VERB|Polarity=Pos , Case=Nom|Number=Sing|POS=VERB|Person=3 , Case=Loc|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Nom|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Voice=Cau , Case=Dat|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Acc|Number=Sing|POS=PROPN|Person=3 , Aspect=Imp|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Fut , POS=ADP , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=1|Polarity=Pos|Tense=Past|Voice=Pass , Evident=Nfh|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Past , Case=Nom|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=1 , Aspect=Perf|Number[psor]=Sing|POS=VERB|Person[psor]=3|Polarity=Pos|Tense=Past|VerbForm=Part , Aspect=Perf|Case=Nom|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Neg|Tense=Past|VerbForm=Part , Case=Acc|Number=Plur|POS=PRON|Person=3 , Aspect=Perf|Number[psor]=Sing|POS=VERB|Person[psor]=3|Polarity=Pos|Tense=Past|VerbForm=Part|Voice=Cau , Case=Acc|Number=Plur|POS=VERB|Person=3 , Aspect=Perf|Case=Abl|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Neg|Tense=Past|VerbForm=Part , Mood=Opt|Number=Sing|POS=VERB|Person=1|Polarity=Pos , Case=Dat|Number=Sing|POS=NOUN|Person=3 , Aspect=Prog|Number=Sing|POS=VERB|Person=1|Polarity=Pos|Tense=Pres , Case=Gen|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Dat|Number=Plur|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Aspect=Prog|Evident=Fh|Number=Plur|POS=VERB|Person=1|Polarity=Pos|Tense=Past , Case=Acc|Number=Sing|POS=PRON|Person=1 , Aspect=Perf|Evident=Fh|Number=Plur|POS=VERB|Person=3|Polarity=Neg|Tense=Past , Case=Ins|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Gen|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=1 , Case=Dat|Number=Sing|Number[psor]=Sing|POS=ADJ|Person=3|Person[psor]=3 , Case=Gen|Number=Sing|POS=PRON|Person=3 , Case=Acc|Number=Plur|Number[psor]=Plur|POS=NOUN|Person=3|Person[psor]=1 , Aspect=Hab|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Pres , Aspect=Hab|Number=Plur|POS=VERB|Person=1|Polarity=Pos|Tense=Pres , Case=Loc|Number=Sing|POS=NOUN|Person=3 , Aspect=Perf|Case=Acc|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Neg|Tense=Past|VerbForm=Part , Aspect=Hab|Number=Sing|POS=VERB|Person=1|Polarity=Pos|Tense=Pres , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=1|Polarity=Pos|Tense=Past , Case=Gen|Number=Sing|Number[psor]=Plur|POS=NOUN|Person=3|Person[psor]=1 , Aspect=Hab|Mood=Pot|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Pres , Case=Acc|Number=Plur|POS=PRON|Person=1 , Case=Nom|Number=Sing|POS=NOUN|Person=3|Polarity=Pos , Case=Nom|Number=Sing|Number[psor]=Sing|POS=PRON|Person=3|Person[psor]=3 , Aspect=Hab|Mood=Imp|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Conv , Aspect=Hab|Mood=Pot|Number=Sing|POS=VERB|Person=3|Polarity=Pos|Tense=Pres|Voice=Cau , Case=Dat|Number=Plur|Number[psor]=Plur|POS=NOUN|Person=3|Person[psor]=1 , Case=Abl|Number=Sing|POS=NOUN|Person=3 , Mood=Imp|POS=VERB|Polarity=Pos|VerbForm=Conv , Aspect=Perf|Evident=Fh|Number=Plur|POS=VERB|Person=1|Polarity=Pos|Tense=Past , Case=Nom|Number=Plur|POS=PRON|Person=3 , Case=Nom|Number=Sing|Number[psor]=Sing|POS=NUM|Person=3|Person[psor]=3 , Case=Nom|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=1|Polarity=Neg|Tense=Past|Voice=Cau , Case=Nom|Number=Plur|POS=ADJ|Person=3 , Aspect=Hab|Mood=Cnd|Number=Plur|POS=VERB|Person=2|Polarity=Pos|Tense=Pres , Aspect=Hab|Number=Plur|POS=VERB|Person=3|Polarity=Neg|Tense=Pres , Aspect=Hab|Number=Sing|POS=VERB|Person=3|Polarity=Neg|Tense=Pres , Aspect=Hab|Number=Plur|POS=VERB|Person=3|Polarity=Pos|Tense=Pres , Case=Gen|Number=Plur|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Case=Gen|Number=Plur|POS=NOUN|Person=3 , Case=Ins|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3|Polarity=Pos , Aspect=Imp|Case=Acc|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=3|Polarity=Pos|Tense=Fut|VerbForm=Part , Case=Acc|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=3 , Aspect=Imp|Number=Sing|POS=AUX|Person=3|Tense=Pres , Case=Loc|Number=Sing|POS=NUM|Person=3 , Aspect=Perf|Evident=Fh|Number=Plur|POS=VERB|Person=3|Polarity=Pos|Tense=Past , Case=Loc|Number=Sing|Number[psor]=Sing|POS=NOUN|Person=3|Person[psor]=2 , Case=Gen|Number=Plur|POS=PRON|Person=1 , Aspect=Perf|Number[psor]=Plur|POS=VERB|Person[psor]=1|Polarity=Pos|Tense=Past|VerbForm=Part , Aspect=Prog|Number=Sing|POS=VERB|Person=3|Polarity=Neg|Tense=Pres , Case=Nom|Number=Sing|POS=PRON|Person=1 , Case=Nom|Number=Sing|POS=NOUN|Person=1 , Mood=Cnd|Number=Sing|POS=AUX|Person=3|Polarity=Pos , Case=Acc|Number=Sing|POS=PRON|Person=3 , Aspect=Prog|Number=Plur|POS=VERB|Person=1|Polarity=Pos|Tense=Pres , Case=Ins|Number=Sing|POS=NOUN|Person=3 , POS=VERB|Polarity=Pos|Tense=Pres|VerbForm=Part|Voice=Pass , Aspect=Perf|Case=Nom|Number=Sing|Number[psor]=Sing|POS=VERB|Person=3|Person[psor]=1|Polarity=Pos|Tense=Past|VerbForm=Part , Case=Nom|POS=VERB|Polarity=Pos|Voice=Cau , Aspect=Prog|Evident=Fh|Number=Sing|POS=VERB|Person=3|Polarity=Neg|Tense=Past , Case=Nom|Number=Sing|POS=ADJ|Person=3|Polarity=Pos , Case=Acc|Number=Sing|POS=VERB|Person=3 , Aspect=Perf|Case=Nom|Mood=Gen|Number=Sing|POS=NOUN|Person=3|Tense=Pres , Case=Abl|Number=Plur|POS=NOUN|Person=3 , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=3|Polarity=Neg|Tense=Past , Aspect=Prog|Evident=Fh|Number=Plur|POS=VERB|Person=3|Polarity=Neg|Tense=Past , Mood=Imp|POS=VERB|Polarity=Pos|VerbForm=Conv|Voice=Cau , Aspect=Perf|Evident=Fh|Number=Sing|POS=VERB|Person=1|Polarity=Pos|Tense=Past|Voice=Cau , Case=Nom|Number=Plur|Number[psor]=Plur|POS=NOUN|Person=3|Person[psor]=3 |
Model Performance
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.8953552753 |
NER | NER Recall | 0.8828096567 |
NER | NER F Score | 0.889038209 |
TAG | TAG (XPOS) Accuracy | 0.9119084416 |
POS | POS (UPOS) Accuracy | 0.9067747055 |
MORPH | Morph (UFeats) Accuracy | 0.891348845 |
LEMMA | Lemma Accuracy | 0.8231760731 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.7348022033 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.6372603014 |
SENTS | Sentences F-Score | 0.8446550816 |
📄 License
This project is licensed under the cc-by-sa-4.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models