🚀 ko_fin_ner_roberta_small_model
This model is a fine - tuned version of klue/roberta-small. It offers a high - performance solution for specific tasks in the financial domain, leveraging the pre - trained features of the base model and achieving excellent results on the evaluation set.
📚 Documentation
Model Information
Property |
Details |
Language |
Korean |
Tags |
Generated from trainer |
Metrics |
Precision, Recall, F1, Accuracy |
Base Model |
klue/roberta - small |
Model Name |
ko_fin_ner_roberta_small_model |
Model Performance
This model is a fine - tuned version of [klue/roberta - small](https://huggingface.co/klue/roberta - small) on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2873
- Precision: 0.7436
- Recall: 0.8774
- F1: 0.8050
- Accuracy: 0.9374
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e - 05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9, 0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Precision |
Recall |
F1 |
Accuracy |
No log |
1.0 |
25 |
1.0272 |
0.1215 |
0.1662 |
0.1404 |
0.7237 |
No log |
2.0 |
50 |
0.7136 |
0.2360 |
0.4033 |
0.2978 |
0.7695 |
No log |
3.0 |
75 |
0.5289 |
0.3422 |
0.5586 |
0.4244 |
0.8285 |
No log |
4.0 |
100 |
0.4404 |
0.4184 |
0.6076 |
0.4956 |
0.8730 |
No log |
5.0 |
125 |
0.3768 |
0.4124 |
0.6540 |
0.5058 |
0.8866 |
No log |
6.0 |
150 |
0.3484 |
0.4758 |
0.6975 |
0.5657 |
0.8953 |
No log |
7.0 |
175 |
0.3236 |
0.5477 |
0.7357 |
0.6279 |
0.9039 |
No log |
8.0 |
200 |
0.3097 |
0.5702 |
0.7520 |
0.6486 |
0.9015 |
No log |
9.0 |
225 |
0.3168 |
0.6167 |
0.7629 |
0.6821 |
0.9096 |
No log |
10.0 |
250 |
0.2950 |
0.6176 |
0.8011 |
0.6975 |
0.9145 |
No log |
11.0 |
275 |
0.2806 |
0.6674 |
0.8147 |
0.7337 |
0.9195 |
No log |
12.0 |
300 |
0.2749 |
0.6853 |
0.8365 |
0.7534 |
0.9266 |
No log |
13.0 |
325 |
0.2743 |
0.7002 |
0.8338 |
0.7612 |
0.9292 |
No log |
14.0 |
350 |
0.2862 |
0.6774 |
0.8011 |
0.7341 |
0.9238 |
No log |
15.0 |
375 |
0.2703 |
0.6879 |
0.8529 |
0.7616 |
0.9276 |
No log |
16.0 |
400 |
0.2752 |
0.7036 |
0.8474 |
0.7689 |
0.9293 |
No log |
17.0 |
425 |
0.2721 |
0.6998 |
0.8447 |
0.7654 |
0.9305 |
No log |
18.0 |
450 |
0.2831 |
0.6979 |
0.8311 |
0.7587 |
0.9299 |
No log |
19.0 |
475 |
0.2857 |
0.7252 |
0.8556 |
0.7850 |
0.9319 |
0.2786 |
20.0 |
500 |
0.2792 |
0.7260 |
0.8665 |
0.7901 |
0.9319 |
0.2786 |
21.0 |
525 |
0.2604 |
0.7355 |
0.8638 |
0.7945 |
0.9349 |
0.2786 |
22.0 |
550 |
0.2603 |
0.7092 |
0.8638 |
0.7789 |
0.9359 |
0.2786 |
23.0 |
575 |
0.3026 |
0.7227 |
0.8665 |
0.7881 |
0.9342 |
0.2786 |
24.0 |
600 |
0.2800 |
0.7431 |
0.8747 |
0.8035 |
0.9375 |
0.2786 |
25.0 |
625 |
0.2838 |
0.7283 |
0.8692 |
0.7925 |
0.9361 |
0.2786 |
26.0 |
650 |
0.2813 |
0.7339 |
0.8719 |
0.7970 |
0.9371 |
0.2786 |
27.0 |
675 |
0.2881 |
0.7407 |
0.8719 |
0.8010 |
0.9358 |
0.2786 |
28.0 |
700 |
0.2894 |
0.7379 |
0.8747 |
0.8005 |
0.9362 |
0.2786 |
29.0 |
725 |
0.2889 |
0.7483 |
0.8747 |
0.8065 |
0.9368 |
0.2786 |
30.0 |
750 |
0.2873 |
0.7436 |
0.8774 |
0.8050 |
0.9374 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
Example Inputs
- example01: "나스닥투자증권에서 시작된 발동성 가치 상태 효과는 투자자들에게 좋은 기회를 제공합니다."
- example02: "TM머니가 베를린증권거래소에서 미국 보험 유가를 거래하고 있습니다."