đ Output_LayoutLMv3_v7
This model is a fine - tuned version of [microsoft/layoutlmv3 - base](https://huggingface.co/microsoft/layoutlmv3 - base) on an unknown dataset. It offers high - performance results in evaluation, which can be used for various related tasks, providing accurate and reliable data analysis.
đ Quick Start
This model is a fine - tuned version of [microsoft/layoutlmv3 - base](https://huggingface.co/microsoft/layoutlmv3 - base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1075
- Precision: 0.7928
- Recall: 0.8
- F1: 0.7964
- Accuracy: 0.9723
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e - 06
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: cosine
- training_steps: 2600
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Precision |
Recall |
F1 |
Accuracy |
No log |
9.09 |
100 |
0.4138 |
0.0 |
0.0 |
0.0 |
0.8962 |
No log |
18.18 |
200 |
0.2709 |
0.1667 |
0.0273 |
0.0469 |
0.9014 |
No log |
27.27 |
300 |
0.2003 |
0.6234 |
0.4364 |
0.5134 |
0.9360 |
No log |
36.36 |
400 |
0.1711 |
0.6496 |
0.6909 |
0.6696 |
0.9481 |
0.3384 |
45.45 |
500 |
0.1624 |
0.6667 |
0.7273 |
0.6957 |
0.9498 |
0.3384 |
54.55 |
600 |
0.1502 |
0.6803 |
0.7545 |
0.7155 |
0.9550 |
0.3384 |
63.64 |
700 |
0.1428 |
0.7227 |
0.7818 |
0.7511 |
0.9602 |
0.3384 |
72.73 |
800 |
0.1452 |
0.7049 |
0.7818 |
0.7414 |
0.9550 |
0.3384 |
81.82 |
900 |
0.1260 |
0.7544 |
0.7818 |
0.7679 |
0.9671 |
0.0995 |
90.91 |
1000 |
0.1254 |
0.7544 |
0.7818 |
0.7679 |
0.9671 |
0.0995 |
100.0 |
1100 |
0.1211 |
0.7863 |
0.8364 |
0.8106 |
0.9706 |
0.0995 |
109.09 |
1200 |
0.1093 |
0.7739 |
0.8091 |
0.7911 |
0.9706 |
0.0995 |
118.18 |
1300 |
0.1081 |
0.7946 |
0.8091 |
0.8018 |
0.9723 |
0.0995 |
127.27 |
1400 |
0.1108 |
0.7778 |
0.8273 |
0.8018 |
0.9723 |
0.0608 |
136.36 |
1500 |
0.1115 |
0.7627 |
0.8182 |
0.7895 |
0.9706 |
0.0608 |
145.45 |
1600 |
0.1034 |
0.8053 |
0.8273 |
0.8161 |
0.9740 |
0.0608 |
154.55 |
1700 |
0.1050 |
0.7895 |
0.8182 |
0.8036 |
0.9723 |
0.0608 |
163.64 |
1800 |
0.1093 |
0.7739 |
0.8091 |
0.7911 |
0.9706 |
0.0608 |
172.73 |
1900 |
0.1043 |
0.7965 |
0.8182 |
0.8072 |
0.9723 |
0.0443 |
181.82 |
2000 |
0.1048 |
0.8036 |
0.8182 |
0.8108 |
0.9758 |
0.0443 |
190.91 |
2100 |
0.1067 |
0.8036 |
0.8182 |
0.8108 |
0.9758 |
0.0443 |
200.0 |
2200 |
0.1069 |
0.8036 |
0.8182 |
0.8108 |
0.9740 |
0.0443 |
209.09 |
2300 |
0.1083 |
0.7928 |
0.8 |
0.7964 |
0.9723 |
0.0443 |
218.18 |
2400 |
0.1079 |
0.7928 |
0.8 |
0.7964 |
0.9723 |
0.0381 |
227.27 |
2500 |
0.1076 |
0.7928 |
0.8 |
0.7964 |
0.9723 |
0.0381 |
236.36 |
2600 |
0.1075 |
0.7928 |
0.8 |
0.7964 |
0.9723 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
đ License
This model is released under the CC - BY - NC - SA 4.0 license.