Da Dacy Small Trf
DaCy is a Danish language processing framework that provides state-of-the-art pipelines and functionalities for analyzing Danish language pipelines.
Downloads 62
Release Time : 3/2/2022
Model Overview
The DaCy Small Model is an NLP processing model for Danish, supporting various tasks such as POS tagging, dependency parsing, named entity recognition, and excels in Danish language processing.
Model Features
Multitasking Capability
Supports various NLP tasks including POS tagging, dependency parsing, and named entity recognition.
Danish Language Optimization
A processing pipeline specifically optimized for Danish, delivering excellent performance in Danish NLP tasks.
High Performance
Achieves state-of-the-art performance in POS tagging and dependency parsing on the Danish Dependency Treebank.
Model Capabilities
POS classification
POS tagging
Morphological analysis
Lemmatization
Dependency parsing
Named entity recognition
Coreference resolution
Named entity linking
Named entity disambiguation
Use Cases
Text Analysis
Danish Text Processing
Performs POS tagging and syntactic analysis on Danish texts.
POS tagging accuracy 98.47%, dependency parsing UAS 89.79%
Information Extraction
Named Entity Recognition
Identifies named entities from Danish texts.
NER F1-score 82.38%
🚀 DaCy small
DaCy is a Danish language processing framework. It offers state - of - the - art pipelines and functionalities for analyzing Danish language pipelines. DaCy's largest pipeline has achieved top - notch performance in parts - of - speech tagging and dependency parsing on the Danish Dependency treebank. It also shows competitive results in named entity recognition, named entity disambiguation, and coreference resolution. To learn more, visit the DaCy repository for usage guides and result reproduction materials. DaCy also includes package usage guides and behavioral tests for bias and robustness in Danish NLP pipelines.
✨ Features
- Comprehensive Functionality: Covers various NLP tasks such as token - classification, POS tagging, morphological analysis, lemmatization, dependency parsing, named entity recognition, coreference resolution, named entity linking, and named entity disambiguation.
- High - Performance Pipelines: Achieves state - of - the - art or competitive results on multiple Danish language datasets.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Name | da_dacy_small_trf - 0.2.0 |
Library Name | spacy |
Datasets | universal_dependencies, dane, alexandrainst/dacoref |
Metrics | accuracy |
License | Apache - 2.0 |
Results
Task Name | Task Type | Metrics | Dataset Name | Dataset Split | Dataset Type | Dataset Config |
---|---|---|---|---|---|---|
NER | token - classification | NER Precision: 0.8306010929 NER Recall: 0.8172043011 NER F Score: 0.8238482385 |
DaNE | test | dane | - |
TAG | token - classification | TAG (XPOS) Accuracy: 0.9846798742 | UD Danish DDT | test | universal_dependencies | da_ddt |
POS | token - classification | POS (UPOS) Accuracy: 0.9842315369 | UD Danish DDT | test | universal_dependencies | da_ddt |
MORPH | token - classification | Morph (UFeats) Accuracy: 0.9772942762 | UD Danish DDT | test | universal_dependencies | da_ddt |
LEMMA | token - classification | Lemma Accuracy: 0.9466699925 | UD Danish DDT | test | universal_dependencies | da_ddt |
UNLABELED_DEPENDENCIES | token - classification | Unlabeled Attachment Score (UAS): 0.8978522787 | UD Danish DDT | test | universal_dependencies | da_ddt |
LABELED_DEPENDENCIES | token - classification | Labeled Attachment Score (LAS): 0.8701623698 | UD Danish DDT | test | universal_dependencies | da_ddt |
SENTS | token - classification | Sentences F - Score: 0.9433304272 | UD Danish DDT | test | universal_dependencies | da_ddt |
coreference - resolution | coreference - resolution | LEA: 0.4218334451 | DaCoref | custom | alexandrainst/dacoref | - |
coreference - resolution | coreference - resolution | Named entity Linking Precision: 0.8461538462 Named entity Linking Recall: 0.2222222222 Named entity Linking F Score: 0.352 |
DaNED | custom | named - entity - linking | - |
Model Details
Feature | Description |
---|---|
Name | da_dacy_small_trf |
Version | 0.2.0 |
spaCy | >=3.5.2,<3.6.0 |
Default Pipeline | transformer , tagger , morphologizer , trainable_lemmatizer , parser , ner , coref , span_resolver , span_cleaner , entity_linker |
Components | transformer , tagger , morphologizer , trainable_lemmatizer , parser , ner , coref , span_resolver , span_cleaner , entity_linker |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD Danish DDT v2.11 (Johannsen, Anders; Martínez Alonso, Héctor; Plank, Barbara) DaNE (Rasmus Hvingelby, Amalie B. Pauli, Maria Barrett, Christina Rosted, Lasse M. Lidegaard, Anders Søgaard) DaCoref (Buch - Kromann, Matthias) DaNED (Barrett, M. J., Lam, H., Wu, M., Lacroix, O., Plank, B., & Søgaard, A.) jonfd/electra-small-nordic (Jón Friðrik Daðason) |
License | Apache - 2.0 |
Author | Kenneth Enevoldsen |
Label Scheme
View label scheme (211 labels for 4 components)
Component | Labels |
---|---|
tagger |
ADJ , ADP , ADV , AUX , CCONJ , DET , INTJ , NOUN , NUM , PART , PRON , PROPN , PUNCT , SCONJ , SYM , VERB , X |
morphologizer |
AdpType=Prep|POS=ADP , Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=AUX|Tense=Pres|VerbForm=Fin|Voice=Act , POS=PROPN , Definite=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , POS=SCONJ , Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , POS=ADV , Number=Plur|POS=DET|PronType=Dem , Degree=Pos|Number=Plur|POS=ADJ , Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , POS=PUNCT , NumType=Ord|POS=ADJ , POS=CCONJ , Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=VERB|VerbForm=Inf|Voice=Act , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Degree=Sup|POS=ADV , Degree=Pos|POS=ADV , Gender=Com|Number=Sing|POS=DET|PronType=Ind , Number=Plur|POS=DET|PronType=Ind , POS=ADP , POS=ADV|PartType=Inf , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Ind|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=ADP|PartType=Inf , Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , NumType=Card|POS=NUM , Degree=Pos|POS=ADJ , Definite=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=PART|PartType=Inf , Case=Acc|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Number[psor]=Plur|POS=DET|Person=3|Poss=Yes|PronType=Prs , POS=VERB|Tense=Pres|VerbForm=Part , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Definite=Def|Degree=Sup|Number=Plur|POS=ADJ , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs , POS=AUX|VerbForm=Inf|Voice=Act , Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Definite=Ind|Degree=Cmp|Number=Sing|POS=ADJ , Degree=Cmp|POS=ADJ , POS=PRON|PartType=Inf , Definite=Ind|Degree=Pos|Number=Sing|POS=ADJ , Case=Nom|Gender=Com|POS=PRON|PronType=Ind , Number=Plur|POS=PRON|PronType=Ind , POS=INTJ , Gender=Com|Number=Sing|POS=DET|PronType=Dem , Case=Gen|Number=Plur|POS=DET|PronType=Ind , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Degree=Cmp|POS=ADV , Number=Plur|Number[psor]=Plur|POS=PRON|Person=1|Poss=Yes|PronType=Prs|Style=Form , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=3|PronType=Prs , Number=Plur|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Case=Gen|POS=PROPN , Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=1|PronType=Prs , Definite=Def|Degree=Sup|POS=ADJ , Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Definite=Def|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , POS=PRON|PronType=Dem , Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Number=Plur|POS=NUM , POS=VERB|VerbForm=Inf|Voice=Pass , Definite=Def|Degree=Sup|Number=Sing|POS=ADJ , Number=Sing|POS=PRON|PronType=Int,Rel , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=1|PronType=Prs , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , POS=PRON , Definite=Ind|Number=Sing|POS=NOUN , Definite=Ind|Number=Sing|POS=NUM , Case=Gen|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , Foreign=Yes|POS=ADV , POS=NOUN , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , Gender=Com|Number=Plur|POS=NOUN , Gender=Neut|Number=Sing|POS=PRON|PronType=Int,Rel , Case=Nom|Gender=Com|Number=Plur|POS=PRON|Person=1|PronType=Prs , Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Gen|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Degree=Sup|POS=ADJ , Degree=Pos|Number=Sing|POS=ADJ , Mood=Imp|POS=VERB , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=2|Polite=Form|PronType=Prs , Case=Acc|Gender=Com|POS=PRON|Person=2|Polite=Form|PronType=Prs , POS=X , Case=Gen|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Number=Plur|POS=PRON|PronType=Dem , Case=Acc|Gender=Com|Number=Plur|POS=PRON|Person=1|PronType=Prs , Number=Plur|POS=PRON|PronType=Int,Rel , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Degree=Cmp|Number=Plur|POS=ADJ , Number=Plur|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Com|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=2|PronType=Prs , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=2|PronType=Prs , Gender=Com|POS=PRON|PronType=Int,Rel , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , POS=VERB|VerbForm=Ger , Gender=Com|Number=Sing|POS=PRON|PronType=Dem , Case=Gen|POS=PRON|PronType=Int,Rel , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Abbr=Yes|POS=X , Case=Gen|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=2|Poss=Yes|PronType=Prs , Definite=Ind|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Number=Plur|POS=PRON|PronType=Rcp , Case=Nom|Gender=Com|Number=Plur|POS=PRON|Person=2|PronType=Prs , Case=Gen|Degree=Cmp|POS=ADJ , Case=Gen|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Gender=Com|Number=Plur|POS=PRON|Person=2|PronType=Prs , Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Number=Plur|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Gender=Neut|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Number=Plur|Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs , Case=Gen|Number=Plur|POS=PRON|PronType=Rcp , POS=DET|Person=2|Polite=Form|Poss=Yes|PronType=Prs , POS=SYM , POS=DET|PronType=Dem , Gender=Com|Number=Sing|POS=NUM , Number[psor]=Plur|POS=DET|Person=2|Poss=Yes|PronType=Prs , Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Degree=Abs|POS=ADJ , POS=VERB|Tense=Pres , Definite=Ind|Gender=Neut|Number=Sing|POS=NUM , Degree=Abs|POS=ADV , Case=Gen|Definite=Def|Degree=Pos|Number=Sing|POS=ADJ |
📄 License
This project is licensed under the Apache - 2.0 license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models