Da Core News Lg
CPU-optimized Danish language processing pipeline including tokenization, POS tagging, dependency parsing, named entity recognition, and other complete NLP functionalities
Downloads 78
Release Time : 3/2/2022
Model Overview
Large Danish language processing model provided by spaCy, supporting POS tagging, dependency parsing, named entity recognition, lemmatization, and other natural language processing tasks, optimized for CPU usage
Model Features
CPU optimization
Processing pipeline specifically optimized for CPU usage scenarios
Complete NLP functionalities
Provides complete natural language processing capabilities from tokenization to named entity recognition
High-quality word vectors
Includes 500,000 unique word vectors (300 dimensions) trained on fastText
Model Capabilities
Tokenization
POS tagging
Dependency parsing
Named entity recognition
Lemmatization
Morphological analysis
Sentence boundary detection
Use Cases
Text analysis
Danish text processing
Process Danish texts to extract grammatical structures and semantic information
Accuracy: POS tagging 96.66%, named entity recognition F1 score 80.95%
Information extraction
Entity recognition
Identify entities such as person names, locations, and organizations from Danish texts
Precision 80.04%, recall 81.88%
🚀 da_core_news_lg
A Danish language pipeline optimized for CPU, supporting multiple token - classification tasks such as NER, TAG, POS, etc.
📚 Documentation
Details
For more details, please visit: https://spacy.io/models/da#da_core_news_lg
This is a Danish pipeline optimized for CPU. Components include: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
Property | Details |
---|---|
Name | da_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | UD Danish DDT v2.8 (Johannsen, Anders; Martínez Alonso, Héctor; Plank, Barbara) DaNE (Rasmus Hvingelby, Amalie B. Pauli, Maria Barrett, Christina Rosted, Lasse M. Lidegaard, Anders Søgaard) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | CC BY - SA 4.0 |
Author | Explosion |
Label Scheme
View label scheme (194 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
AdpType=Prep|POS=ADP , Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=AUX|Tense=Pres|VerbForm=Fin|Voice=Act , POS=PROPN , Definite=Ind|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , POS=SCONJ , Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , POS=ADV , Number=Plur|POS=DET|PronType=Dem , Degree=Pos|Number=Plur|POS=ADJ , Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , POS=PUNCT , POS=CCONJ , Definite=Ind|Degree=Cmp|Number=Sing|POS=ADJ , Degree=Cmp|POS=ADJ , POS=PRON|PartType=Inf , Gender=Com|Number=Sing|POS=DET|PronType=Ind , Definite=Ind|Degree=Pos|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Degree=Pos|POS=ADV , Definite=Def|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , POS=PRON|PronType=Dem , NumType=Card|POS=NUM , Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=3|PronType=Prs , Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=3|PronType=Prs , NumType=Ord|POS=ADJ , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Mood=Ind|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , POS=VERB|VerbForm=Inf|Voice=Act , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , POS=ADP|PartType=Inf , Degree=Pos|POS=ADJ , Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs , Case=Gen|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , POS=AUX|VerbForm=Inf|Voice=Act , Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Gender=Com|Number=Sing|POS=DET|PronType=Dem , Number=Plur|POS=DET|PronType=Ind , Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Acc|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , POS=PART|PartType=Inf , Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=1|PronType=Prs , Case=Nom|Gender=Com|POS=PRON|PronType=Ind , Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Mood=Imp|POS=VERB , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , Definite=Ind|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=X , Case=Nom|Gender=Com|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Gen|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , POS=VERB|Tense=Pres|VerbForm=Part , Number=Plur|POS=PRON|PronType=Int,Rel , POS=VERB|VerbForm=Inf|Voice=Pass , Case=Gen|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , Degree=Cmp|POS=ADV , POS=ADV|PartType=Inf , Degree=Sup|POS=ADV , Number=Plur|POS=PRON|PronType=Dem , Number=Plur|POS=PRON|PronType=Ind , Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=1|PronType=Prs , Case=Gen|POS=PROPN , POS=ADP , Degree=Cmp|Number=Plur|POS=ADJ , Definite=Def|Degree=Sup|POS=ADJ , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , Degree=Pos|Number=Sing|POS=ADJ , Number=Plur|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Gender=Com|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Number=Plur|POS=PRON|PronType=Rcp , Case=Gen|Degree=Cmp|POS=ADJ , POS=SPACE , Case=Gen|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Number[psor]=Plur|POS=DET|Person=3|Poss=Yes|PronType=Prs , POS=INTJ , Number=Plur|Number[psor]=Sing|POS=DET|Person=1|Poss=Yes|PronType=Prs , Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Gender=Neut|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Case=Acc|Gender=Com|Number=Sing|POS=PRON|Person=2|PronType=Prs , Gender=Com|Number=Sing|Number[psor]=Sing|POS=DET|Person=2|Poss=Yes|PronType=Prs , Case=Gen|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , Number=Sing|POS=PRON|PronType=Int,Rel , Number=Plur|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs|Style=Form , Gender=Neut|Number=Sing|POS=PRON|PronType=Int,Rel , Definite=Def|Degree=Sup|Number=Plur|POS=ADJ , Case=Nom|Gender=Com|Number=Sing|POS=PRON|Person=2|PronType=Prs , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Definite=Ind|Number=Sing|POS=NOUN , Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , POS=SYM , Case=Nom|Gender=Com|POS=PRON|Person=2|Polite=Form|PronType=Prs , Degree=Sup|POS=ADJ , Number=Plur|POS=DET|PronType=Ind|Style=Arch , Case=Gen|Gender=Com|Number=Sing|POS=DET|PronType=Dem , Foreign=Yes|POS=X , POS=DET|Person=2|Polite=Form|Poss=Yes|PronType=Prs , Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Case=Acc|Gender=Com|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Case=Gen|POS=PRON|PronType=Int,Rel , Gender=Com|Number=Sing|POS=PRON|PronType=Dem , Abbr=Yes|POS=X , Case=Gen|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Definite=Def|Degree=Abs|POS=ADJ , Definite=Ind|Degree=Sup|Number=Sing|POS=ADJ , Definite=Ind|POS=NOUN , Gender=Com|Number=Plur|POS=NOUN , Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Com|POS=PRON|PronType=Int,Rel , Case=Nom|Gender=Com|Number=Plur|POS=PRON|Person=2|PronType=Prs , Degree=Abs|POS=ADV , POS=VERB|VerbForm=Ger , POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Degree=Sup|Number=Sing|POS=ADJ , Number=Plur|Number[psor]=Plur|POS=PRON|Person=1|Poss=Yes|PronType=Prs|Style=Form , Case=Gen|Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Case=Acc|Gender=Com|POS=PRON|Person=2|Polite=Form|PronType=Prs , Gender=Com|Number=Sing|POS=PRON|PronType=Int,Rel , POS=VERB|Tense=Pres , Case=Gen|Number=Plur|POS=DET|PronType=Ind , Number[psor]=Plur|POS=DET|Person=2|Poss=Yes|PronType=Prs , POS=PRON|Person=2|Polite=Form|Poss=Yes|PronType=Prs , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=DET|Person=2|Poss=Yes|PronType=Prs , POS=AUX|Tense=Pres|VerbForm=Part , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Gender=Com|Number=Sing|Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Degree=Sup|Number=Plur|POS=ADJ , Case=Acc|Gender=Com|Number=Plur|POS=PRON|Person=2|PronType=Prs , Gender=Neut|Number=Sing|Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs|Reflex=Yes , Definite=Ind|Number=Plur|POS=NOUN , Case=Gen|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Mood=Imp|POS=AUX , Gender=Com|Number=Sing|Number[psor]=Sing|POS=PRON|Person=1|Poss=Yes|PronType=Prs , Number[psor]=Sing|POS=PRON|Person=3|Poss=Yes|PronType=Prs , Definite=Def|Gender=Com|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|Number[psor]=Sing|POS=DET|Person=2|Poss=Yes|PronType=Prs , Case=Gen|Gender=Com|Number=Sing|POS=DET|PronType=Ind , Case=Gen|POS=NOUN , Number[psor]=Plur|POS=PRON|Person=3|Poss=Yes|PronType=Prs , POS=DET|PronType=Dem , Definite=Def|Number=Plur|POS=NOUN |
parser |
ROOT , acl:relcl , advcl , advmod , advmod:lmod , amod , appos , aux , case , cc , ccomp , compound:prt , conj , cop , dep , det , expl , fixed , flat , iobj , list , mark , nmod , nmod:poss , nsubj , nummod , obj , obl , obl:lmod , obl:tmod , punct , xcomp |
ner |
LOC , MISC , ORG , PER |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.89 |
TOKEN_P |
99.78 |
TOKEN_R |
99.75 |
TOKEN_F |
99.76 |
POS_ACC |
96.66 |
MORPH_ACC |
95.74 |
MORPH_MICRO_P |
97.43 |
MORPH_MICRO_R |
96.75 |
MORPH_MICRO_F |
97.09 |
SENTS_P |
89.09 |
SENTS_R |
88.30 |
SENTS_F |
88.69 |
DEP_UAS |
82.25 |
DEP_LAS |
78.29 |
LEMMA_ACC |
94.84 |
TAG_ACC |
96.66 |
ENTS_P |
80.04 |
ENTS_R |
81.88 |
ENTS_F |
80.95 |
📄 License
This project is licensed under the CC BY - SA 4.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models