De Core News Md
CPU-optimized German processing pipeline including tokenization, part-of-speech tagging, morphological analysis, dependency parsing, lemmatization, named entity recognition, etc.
Downloads 22
Release Time : 3/2/2022
Model Overview
Medium-sized German processing model provided by spaCy, trained on TIGER corpus and WikiNER data, suitable for general German text processing tasks
Model Features
CPU Optimization
Specifically optimized for CPU usage scenarios, suitable for resource-constrained environments
Comprehensive Processing Pipeline
Includes complete NLP processing components from tokenization to named entity recognition
High-Quality Word Vectors
Contains 500,000 keys and 20,000 unique vectors (300 dimensions), trained on fastText
Model Capabilities
Tokenization
Part-of-speech tagging
Morphological analysis
Dependency parsing
Lemmatization
Named entity recognition
Sentence segmentation
Use Cases
Text Processing
German Text Analysis
Performs grammatical and structural analysis of German texts
Accurately identifies parts of speech, dependency relations, and named entities
Information Extraction
Extracts structured information from German texts
Identifies entities such as person names, locations, and organizations in text
Language Learning
German Grammar Analysis
Helps learners understand German sentence structures
Provides detailed part-of-speech tagging and dependency relation analysis
🚀 de_core_news_md
This is a German pipeline optimized for CPU, designed for various token - classification tasks.
📚 Documentation
Details
For more details, please visit: https://spacy.io/models/de#de_core_news_md
This German pipeline is optimized for CPU. Its components include tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, and ner.
Property | Details |
---|---|
Model Name | de_core_news_md |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 20000 unique vectors (300 dimensions) |
Sources | TIGER Corpus (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit) Tiger2Dep (Wolfgang Seeker) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | MIT |
Author | Explosion |
Model Index
The model has been evaluated on multiple token - classification tasks, and the results are as follows:
Task | Metrics | Value |
---|---|---|
NER | NER Precision | 0.8439391945 |
NER | NER Recall | 0.8342856523 |
NER | NER F Score | 0.8390846587 |
TAG | TAG (XPOS) Accuracy | 0.9781087492 |
POS | POS (UPOS) Accuracy | 0.9829388521 |
MORPH | Morph (UFeats) Accuracy | 0.9150510777 |
LEMMA | Lemma Accuracy | 0.9769605349 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9254139496 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.9056705833 |
SENTS | Sentences F - Score | 0.9507828582 |
Label Scheme
View label scheme (772 labels for 4 components)
Component | Labels |
---|---|
tagger |
$( , $, , $. , ADJA , ADJD , ADV , APPO , APPR , APPRART , APZR , ART , CARD , FM , ITJ , KOKOM , KON , KOUI , KOUS , NE , NN , NNE , PDAT , PDS , PIAT , PIS , PPER , PPOSAT , PPOSS , PRELAT , PRELS , PRF , PROAV , PTKA , PTKANT , PTKNEG , PTKVZ , PTKZU , PWAT , PWAV , PWS , TRUNC , VAFIN , VAIMP , VAINF , VAPP , VMFIN , VMINF , VMPP , VVFIN , VVIMP , VVINF , VVIZU , VVPP , XY , _SP |
morphologizer |
POS=PUNCT , Case=Nom|Gender=Masc|Number=Sing|POS=PROPN , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , POS=ADV , Case=Nom|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , POS=ADP , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Gender=Neut|Number=Sing|POS=PROPN , POS=VERB|VerbForm=Part , Case=Dat|Gender=Fem|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Degree=Pos|POS=ADV , Case=Dat|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Dat|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , POS=CCONJ , POS=SCONJ , Case=Acc|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , POS=VERB|VerbForm=Inf , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Nom|Gender=Fem|Number=Plur|POS=NOUN , Case=Acc|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Sup|Gender=Fem|Number=Sing|POS=ADJ , Case=Gen|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Sing|POS=NOUN , Case=Dat|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Fem|Number=Sing|POS=NOUN , POS=PART , Case=Nom|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Nom|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Dat|Number=Plur|POS=PROPN , POS=PRON|PronType=Ind , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Acc|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=PROPN , Case=Dat|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Number=Sing|POS=PROPN , Case=Dat|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Gender=Masc|Number=Plur|POS=NOUN , POS=NUM , Case=Dat|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Dat|Gender=Masc|Number=Sing|POS=ADP , Gender=Neut|POS=NOUN , Case=Acc|Number=Sing|POS=PROPN , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Case=Gen|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Acc|Gender=Fem|Number=Plur|POS=NOUN , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Gen|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=NOUN , Case=Acc|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Acc|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , POS=PROPN , Case=Nom|Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , POS=INTJ , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Case=Nom|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Neut|Number=Sing|POS=NOUN , Case=Acc|Number=Sing|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Dat|Degree=Pos|Gender=Fem|Number=Plur|POS=ADJ , Case=Acc|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Acc|Gender=Masc|Number=Plur|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Nom|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Plur|POS=PRON|PronType=Rel , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Gender=Masc|POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Nom|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=DET|PronType=Int , Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , POS=SCONJ|PronType=Int , Case=Acc|Gender=Fem|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Number=Sing|POS=PRON|PronType=Ind , Case=Gen|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Case=Dat|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Degree=Cmp|Gender=Fem|Number=Plur|POS=ADJ , Case=Nom|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Gender=Neut|POS=PRON|PronType=Ind , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Case=Dat|Gender=Fem|Number=Sing|POS=ADP , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Int , Case=Gen|Number=Plur|POS=PROPN , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Definite=Def|Gender=Neut|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Degree=Cmp|POS=ADV , Case=Nom|Gender=Neut|Number=Plur|POS=PRON|PronType=Dem , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Dat|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Acc|Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Number=Sing|POS=PROPN , Case=Nom|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Gender=Fem|Number=Plur|POS=PRON|PronType=Rel , Case=Acc|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Ind , Case=Gen|Gender=Neut|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=DET|PronType=Rel , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Acc|Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Case=Gen|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , POS=X , `Case=Dat|Degree |
📄 License
This project is licensed under the MIT license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models