De Core News Sm
CPU-optimized German processing pipeline, including tokenization, POS tagging, morphological analysis, dependency parsing, lemmatization, named entity recognition, etc.
Downloads 161
Release Time : 3/2/2022
Model Overview
A small German language model provided by spaCy, suitable for basic NLP tasks in German text processing, including tokenization, POS tagging, named entity recognition, etc. The model is optimized for CPU usage and is ideal for resource-limited environments.
Model Features
CPU Optimization
Specially optimized for CPU usage, suitable for resource-limited environments
Comprehensive NLP Features
Provides a complete German text processing pipeline, including tokenization, POS tagging, dependency parsing, etc.
High Accuracy
Achieves 97.38% accuracy in POS tagging and an F1 score of 82.04% in named entity recognition
Trainable Lemmatizer
Includes a trainable lemmatization component to improve lemmatization accuracy
Model Capabilities
Tokenization
POS tagging
Morphological analysis
Dependency parsing
Lemmatization
Named entity recognition
Sentence segmentation
Use Cases
Text Processing
German Text Analysis
Performs grammatical and structural analysis of German text
Identifies linguistic features such as POS tags and dependency relations
Information Extraction
Extracts named entities from German text
Identifies entities such as person names, locations, and organizations
Language Learning
German Learning Tool
Provides grammatical analysis for German learners
Helps understand sentence structure and word inflections
🚀 de_core_news_sm
This is a German pipeline optimized for CPU, which can perform tasks such as NER, TAG, POS, MORPH, LEMMA, UNLABELED_DEPENDENCIES, LABELED_DEPENDENCIES, and SENTS.
📚 Documentation
Details
For more details, please visit: https://spacy.io/models/de#de_core_news_sm
This German pipeline is optimized for CPU. Components include: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
Property | Details |
---|---|
Model Type | German pipeline optimized for CPU |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | TIGER Corpus (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit) Tiger2Dep (Wolfgang Seeker) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) |
License | MIT |
Author | Explosion |
Model Index
Task | Metrics | Value |
---|---|---|
NER | NER Precision | 0.8304823051 |
NER | NER Recall | 0.8106276632 |
NER | NER F Score | 0.8204348804 |
TAG | TAG (XPOS) Accuracy | 0.9738469671 |
POS | POS (UPOS) Accuracy | 0.9801441777 |
MORPH | Morph (UFeats) Accuracy | 0.9065560122 |
LEMMA | Lemma Accuracy | 0.9746015805 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9192300179 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8984777676 |
SENTS | Sentences F-Score | 0.937338274 |
Label Scheme
View label scheme (772 labels for 4 components)
Component | Labels |
---|---|
tagger |
$( , $, , $. , ADJA , ADJD , ADV , APPO , APPR , APPRART , APZR , ART , CARD , FM , ITJ , KOKOM , KON , KOUI , KOUS , NE , NN , NNE , PDAT , PDS , PIAT , PIS , PPER , PPOSAT , PPOSS , PRELAT , PRELS , PRF , PROAV , PTKA , PTKANT , PTKNEG , PTKVZ , PTKZU , PWAT , PWAV , PWS , TRUNC , VAFIN , VAIMP , VAINF , VAPP , VMFIN , VMINF , VMPP , VVFIN , VVIMP , VVINF , VVIZU , VVPP , XY , _SP |
morphologizer |
POS=PUNCT , Case=Nom|Gender=Masc|Number=Sing|POS=PROPN , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , POS=ADV , Case=Nom|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=NOUN , POS=ADP , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Gender=Neut|Number=Sing|POS=PROPN , POS=VERB|VerbForm=Part , Case=Dat|Gender=Fem|Number=Plur|POS=NOUN , Foreign=Yes|POS=X , Degree=Pos|POS=ADV , Case=Dat|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Gender=Neut|Number=Sing|POS=NOUN , Case=Dat|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Dat|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Dat|Gender=Masc|Number=Sing|POS=NOUN , POS=CCONJ , POS=SCONJ , Case=Acc|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , POS=VERB|VerbForm=Inf , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Nom|Gender=Fem|Number=Plur|POS=NOUN , Case=Acc|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Acc|Degree=Sup|Gender=Fem|Number=Sing|POS=ADJ , Case=Gen|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Sing|POS=NOUN , Case=Dat|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Fem|Number=Sing|POS=NOUN , POS=PART , Case=Nom|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Nom|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Dat|Number=Plur|POS=PROPN , POS=PRON|PronType=Ind , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Acc|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Masc|Number=Sing|POS=PROPN , Case=Dat|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Number=Sing|POS=PROPN , Case=Dat|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Dat|Gender=Masc|Number=Plur|POS=NOUN , POS=NUM , Case=Dat|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Dat|Gender=Masc|Number=Sing|POS=ADP , Gender=Neut|POS=NOUN , Case=Acc|Number=Sing|POS=PROPN , Case=Acc|Number=Plur|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=NOUN , Case=Gen|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Acc|Gender=Fem|Number=Plur|POS=NOUN , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Gen|Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Number=Plur|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=NOUN , Case=Acc|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Number=Plur|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Acc|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , POS=PROPN , Case=Nom|Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , POS=INTJ , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Case=Nom|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Nom|Gender=Neut|Number=Sing|POS=NOUN , Case=Acc|Number=Sing|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Dat|Degree=Pos|Gender=Fem|Number=Plur|POS=ADJ , Case=Acc|Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Case=Acc|Gender=Masc|Number=Plur|POS=NOUN , Case=Nom|Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , Case=Nom|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Nom|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Plur|POS=PRON|PronType=Rel , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Gender=Masc|POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Case=Nom|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Nom|Gender=Fem|Number=Sing|POS=DET|PronType=Int , Case=Gen|Gender=Masc|Number=Sing|POS=PROPN , POS=SCONJ|PronType=Int , Case=Acc|Gender=Fem|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Number=Sing|POS=PRON|PronType=Ind , Case=Gen|Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Fem|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Case=Nom|Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Case=Dat|Degree=Pos|Gender=Fem|Number=Sing|POS=ADJ , Case=Acc|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|Degree=Cmp|Gender=Fem|Number=Plur|POS=ADJ , Case=Nom|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Gender=Neut|POS=PRON|PronType=Ind , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Dat|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Number=Plur|POS=NOUN , Case=Dat|Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Case=Dat|Gender=Masc|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Case=Dat|Gender=Fem|Number=Sing|POS=ADP , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Int , Case=Gen|Number=Plur|POS=PROPN , Case=Acc|Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Case=Acc|Gender=Neut|Number=Plur|POS=NOUN , Case=Acc|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Definite=Def|Gender=Neut|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Neut|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Degree=Cmp|POS=ADV , Case=Nom|Gender=Neut|Number=Plur|POS=PRON|PronType=Dem , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Acc|Gender=Neut|Number=Sing|POS=ADP , Case=Dat|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Dat|Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Case=Gen|Gender=Masc|Number=Plur|POS=NOUN , Case=Acc|Gender=Neut|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Acc|Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Case=Gen|Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Case=Gen|Number=Sing|POS=PROPN , Case=Nom|Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Case=Dat|Gender=Fem|Number=Plur|POS=PRON|PronType=Rel , Case=Acc|Degree=Pos|Gender=Masc|Number=Plur|POS=ADJ , Case=Nom|Gender=Fem|Number=Plur|POS=DET|PronType=Ind , Case=Gen|Gender=Neut|Number=Sing|POS=PROPN , Case=Gen|Gender=Masc|Number=Sing|POS=DET|PronType=Rel , Case=Nom|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Case=Acc|Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Case=Gen|Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , POS=X , Case=Dat|Degree=Sup|Gender=Fem|Number=Sing|POS=ADJ , Case=Gen|Number=Plur|POS=NOUN , Case=Gen|Degree=Pos|Gender=Masc|Num |
📄 License
This project is licensed under the MIT license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models