Es Core News Lg
CPU-optimized Spanish processing pipeline, including tokenization, POS tagging, dependency parsing, named entity recognition, etc.
Downloads 52
Release Time : 3/2/2022
Model Overview
Large Spanish NLP model provided by spaCy, supporting a complete natural language processing pipeline, including tasks such as tokenization, POS tagging, dependency parsing, and named entity recognition.
Model Features
Comprehensive NLP capabilities
Supports a full suite of natural language processing functions from basic tokenization to complex dependency parsing
CPU optimization
Specifically optimized for CPU usage scenarios, suitable for resource-constrained environments
High-quality word vectors
Includes 500,000 unique vectors (300 dimensions), providing strong semantic representation capabilities
Model Capabilities
Text tokenization
POS tagging
Named entity recognition
Dependency parsing
Lemmatization
Morphological analysis
Sentence segmentation
Use Cases
Text processing
Spanish document analysis
Performs grammatical analysis and entity extraction on Spanish documents
Accurately identifies entities such as names and locations in documents
Spanish language teaching aid
Used for grammatical analysis in Spanish learning applications
Helps students understand sentence structure and morphological changes
Information extraction
News content analysis
Extracts key information from Spanish news
Accurately identifies people, organizations, and locations in news
🚀 es_core_news_lg
A Spanish language pipeline optimized for CPU, offering high - performance token - classification tasks.
📚 Documentation
Details: https://spacy.io/models/es#es_core_news_lg
This is a Spanish pipeline optimized for CPU. Its components include tok2vec, morphologizer, parser, senter, ner, attribute_ruler, and lemmatizer.
Property | Details |
---|---|
Name | es_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | UD Spanish AnCora v2.8 (Martínez Alonso, Héctor; Zeman, Daniel) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) spaCy lookups data (Explosion) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | GNU GPL 3.0 |
Author | Explosion |
Model Results
The es_core_news_lg
model has been evaluated on several token - classification tasks, with the following results:
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.8966603655 |
NER | NER Recall | 0.8978100704 |
NER | NER F Score | 0.8972348496 |
TAG | TAG (XPOS) Accuracy | 0.9614499866 |
POS | POS (UPOS) Accuracy | 0.9850860714 |
MORPH | Morph (UFeats) Accuracy | 0.981883016 |
LEMMA | Lemma Accuracy | 0.9661603335 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9140378979 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8818715744 |
SENTS | Sentences F - Score | 0.9769502508 |
Label Scheme
View label scheme (468 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=NOUN , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Gender=Masc|Number=Sing|POS=ADJ , POS=ADP , Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , POS=PROPN , Case=Acc|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , POS=VERB|VerbForm=Inf , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|Number=Sing|POS=NOUN , Gender=Fem|Number=Plur|POS=NOUN , Gender=Fem|Number=Plur|POS=DET|PronType=Ind , POS=PRON|PronType=Int,Rel , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , POS=SCONJ , POS=NOUN , Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Number=Plur|POS=NOUN , Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Gender=Masc|Number=Plur|POS=NOUN , POS=PUNCT|PunctType=Peri , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=PUNCT|PunctType=Comm , Case=Acc|Gender=Fem|Number=Sing|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|POS=ADJ , POS=CCONJ , Gender=Masc|Number=Plur|POS=PRON|PronType=Ind , POS=ADV , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Gender=Masc|NumType=Card|Number=Plur|POS=DET|PronType=Dem , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Number=Sing|POS=ADJ , Gender=Masc|Number=Plur|POS=ADJ|VerbForm=Part , Gender=Masc|Number=Plur|POS=PRON|PronType=Tot , POS=PRON|PronType=Ind , POS=ADV|Polarity=Neg , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Gender=Fem|Number=Sing|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Number=Plur|POS=PRON|PronType=Int,Rel , POS=PUNCT|PunctType=Quot , POS=PUNCT , Gender=Masc|Number=Sing|POS=ADJ|VerbForm=Part , POS=PUNCT|PunctSide=Ini|PunctType=Brck , POS=PUNCT|PunctSide=Fin|PunctType=Brck , NumForm=Digit|NumType=Card|POS=NUM , NumType=Card|POS=NUM , POS=VERB|VerbForm=Ger , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Number=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs , Number=Sing|POS=NOUN , Gender=Masc|Number=Plur|POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Sing|POS=ADJ|VerbForm=Part , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Degree=Cmp|POS=ADV , POS=AUX|VerbForm=Inf , Number=Plur|POS=DET|PronType=Ind , Number=Plur|POS=DET|PronType=Dem , POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Degree=Cmp|Number=Sing|POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Case=Acc|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Inf , Degree=Sup|Gender=Masc|Number=Plur|POS=ADJ , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , AdvType=Tim|POS=NOUN , Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , NumType=Card|Number=Plur|POS=NUM , Case=Acc|Gender=Masc|Number=Sing|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , NumForm=Digit|POS=NOUN , Number=Sing|POS=PRON|PronType=Dem , Number=Plur|POS=DET|Person=3|Poss=Yes|PronType=Prs , Gender=Fem|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=PRON|PronType=Ind , Gender=Masc|Number=Plur|POS=DET|PronType=Tot , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Gender=Masc|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , Number=Sing|POS=DET|PronType=Tot , Gender=Fem|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Degree=Cmp|Number=Plur|POS=ADJ , POS=AUX|VerbForm=Ger , Gender=Fem|POS=NOUN , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , AdvType=Tim|POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Case=Acc|Gender=Fem|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Plur|POS=ADJ|VerbForm=Part , Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=PRON|Poss=Yes|PronType=Int,Rel , Number=Sing|POS=PRON|PronType=Int,Rel , POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET|PronType=Tot , Case=Acc,Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Definite=Ind|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Acc,Nom|Gender=Fem|Number=Plur|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Masc|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , POS=SPACE , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Mood=Cnd|Number=Sing|POS=VERB|Person=1|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Tot , Number=Plur|POS=PRON|PronType=Ind , Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Case=Dat|Number=Sing|POS=PRON|Person=3|PronType=Prs , POS=PART , Gender=Fem|Number=Sing|POS=DET|PronType=Ind , Number=Sing|POS=DET|PronType=Ind , Gender=Masc|NumType=Card|Number=Plur|POS=DET|PronType=Ind , Mood=Cnd|Number=Plur|POS=AUX|Person=3|VerbForm=Fin , NumForm=Digit|POS=SYM , Mood=Imp|Number=Sing|POS=VERB|Person=2|VerbForm=Fin , Case=Dat|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Mood=Cnd|Number=Sing|POS=AUX|Person=1|VerbForm=Fin , NumForm=Digit|NumType=Frac|POS=NUM , Gender=Fem|Number=Sing|POS=PRON|Poss=Yes|PronType=Int,Rel , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Case=Dat|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Definite=Ind|Gender=Masc|Number=Plur|POS=DET|PronType=Art , POS=PUNCT|PunctType=Colo , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=3|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Neg , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Case=Acc|Gender=Masc|Number=Plur|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Case=Acc|Gender=Fem|Number=Plur|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Case=Acc|Gender=Fem|Number=Sing|POS=AUX|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Number=Sing|POS=PRON|PronType=Neg , POS=PUNCT|PunctType=Semi , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|PronType=Ind , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Case=Acc,Nom|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , POS=INTJ , Gender=Masc|NumType=Card|Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=3|Poss=Yes|PronType=Prs , Case=Dat|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Inf , POS=PUNCT|PunctType=Dash , Case=Acc|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Mood=Cnd|Number=Plur|POS=VERB|Person=1|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Neg , Gender=Fem|NumType=Card|Number=Plur|POS=NUM , Case=Acc|Gender=Fem|Number=Plur|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Gender=Masc|Number=Sing|POS=PRON|PronType=Tot , Gender=Masc|NumType=Card|Number=Plur|POS=NUM , Gender=Masc|POS=NOUN , Case=Acc|Number=Sing|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Gender=Fem|NumType=Card|Number=Sing|POS=DET|PronType=Ind , Gender=Fem|NumType=Card|Number=Plur|POS=DET|PronType=Ind , Case=Acc|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Ger , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , POS=NOUN|VerbForm=Inf , Case=Dat|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Masc|NumType=Card|Number=Sing|POS=NUM , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|Poss=Yes|PronType=Int,Rel , Case=Acc|Gender=Masc|Number=Plur|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Gender=Fem|NumType=Card|Number=Sing|POS=DET|PronType=Dem |
📄 License
This project is licensed under the GNU GPL 3.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models