Es Core News Md
A medium-sized Spanish NLP processing pipeline provided by spaCy, optimized for CPU usage, containing complete language processing components
Downloads 447
Release Time : 3/2/2022
Model Overview
This is a medium-sized Spanish natural language processing model that includes complete NLP functionalities such as tokenization, part-of-speech tagging, dependency parsing, and named entity recognition, optimized for CPU usage.
Model Features
CPU Optimization
Specifically optimized for CPU usage scenarios, suitable for running in environments without GPUs
Complete NLP Components
Includes a full natural language processing pipeline from tokenization to named entity recognition
Pre-trained Word Vectors
Includes 20,000 300-dimensional word vectors, covering 500,000 vocabulary terms
High Accuracy
Achieves an F1 score of 0.89 on NER tasks and part-of-speech tagging accuracy exceeding 0.96
Model Capabilities
Text Tokenization
Part-of-Speech Tagging
Dependency Parsing
Named Entity Recognition
Lemmatization
Sentence Segmentation
Morphological Analysis
Use Cases
Text Processing
Spanish Text Analysis
Performs grammatical analysis and structural understanding of Spanish texts
Accurately identifies parts of speech, syntactic relationships, and named entities
Information Extraction
Extracts key information from Spanish texts
Identifies entities such as person names, locations, and organization names in the text
Language Learning
Spanish Learning Assistance
Analyzes the grammatical structure of Spanish sentences
Helps learners understand sentence components and grammatical relationships
🚀 es_core_news_md
A Spanish language pipeline optimized for CPU, designed for various token - classification tasks.
📚 Documentation
Details: https://spacy.io/models/es#es_core_news_md
This is a Spanish pipeline optimized for CPU. Its components include tok2vec, morphologizer, parser, senter, ner, attribute_ruler, and lemmatizer.
Property | Details |
---|---|
Model Type | es_core_news_md |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 500000 keys, 20000 unique vectors (300 dimensions) |
Sources | UD Spanish AnCora v2.8 (Martínez Alonso, Héctor; Zeman, Daniel) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) spaCy lookups data (Explosion) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | GNU GPL 3.0 |
Author | Explosion |
Model Index
The following is the performance of the es_core_news_md
model on different token - classification tasks:
Task Name | Metric Name | Metric Type | Value |
---|---|---|---|
NER | NER Precision | precision | 0.8925237438 |
NER | NER Recall | recall | 0.8951031872 |
NER | NER F Score | f_score | 0.8938116045 |
TAG | TAG (XPOS) Accuracy | accuracy | 0.9610850187 |
POS | POS (UPOS) Accuracy | accuracy | 0.9848174063 |
MORPH | Morph (UFeats) Accuracy | accuracy | 0.9802342746 |
LEMMA | Lemma Accuracy | accuracy | 0.964971968 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | f_score | 0.9125758682 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | f_score | 0.8800383563 |
SENTS | Sentences F - Score | f_score | 0.9880453102 |
Label Scheme
View label scheme (468 labels for 3 components)
Component | Labels |
---|---|
morphologizer |
Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=NOUN , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Gender=Masc|Number=Sing|POS=ADJ , POS=ADP , Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , POS=PROPN , Case=Acc|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , POS=VERB|VerbForm=Inf , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|Number=Sing|POS=NOUN , Gender=Fem|Number=Plur|POS=NOUN , Gender=Fem|Number=Plur|POS=DET|PronType=Ind , POS=PRON|PronType=Int,Rel , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , POS=SCONJ , POS=NOUN , Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Number=Plur|POS=NOUN , Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Gender=Masc|Number=Plur|POS=NOUN , POS=PUNCT|PunctType=Peri , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , POS=PUNCT|PunctType=Comm , Case=Acc|Gender=Fem|Number=Sing|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|POS=ADJ , POS=CCONJ , Gender=Masc|Number=Plur|POS=PRON|PronType=Ind , POS=ADV , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Gender=Masc|NumType=Card|Number=Plur|POS=DET|PronType=Dem , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Number=Sing|POS=ADJ , Gender=Masc|Number=Plur|POS=ADJ|VerbForm=Part , Gender=Masc|Number=Plur|POS=PRON|PronType=Tot , POS=PRON|PronType=Ind , POS=ADV|Polarity=Neg , Case=Acc|Gender=Masc|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Gender=Fem|Number=Sing|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Number=Plur|POS=PRON|PronType=Int,Rel , POS=PUNCT|PunctType=Quot , POS=PUNCT , Gender=Masc|Number=Sing|POS=ADJ|VerbForm=Part , POS=PUNCT|PunctSide=Ini|PunctType=Brck , POS=PUNCT|PunctSide=Fin|PunctType=Brck , NumForm=Digit|NumType=Card|POS=NUM , NumType=Card|POS=NUM , POS=VERB|VerbForm=Ger , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Number=Sing|POS=DET|Person=3|Poss=Yes|PronType=Prs , Number=Sing|POS=NOUN , Gender=Masc|Number=Plur|POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|Number=Sing|POS=ADJ|VerbForm=Part , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Degree=Cmp|POS=ADV , POS=AUX|VerbForm=Inf , Number=Plur|POS=DET|PronType=Ind , Number=Plur|POS=DET|PronType=Dem , POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Degree=Cmp|Number=Sing|POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Case=Acc|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Inf , Degree=Sup|Gender=Masc|Number=Plur|POS=ADJ , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , AdvType=Tim|POS=NOUN , Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , NumType=Card|Number=Plur|POS=NUM , Case=Acc|Gender=Masc|Number=Sing|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , NumForm=Digit|POS=NOUN , Number=Sing|POS=PRON|PronType=Dem , Number=Plur|POS=DET|Person=3|Poss=Yes|PronType=Prs , Gender=Fem|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=PRON|PronType=Ind , Gender=Masc|Number=Plur|POS=DET|PronType=Tot , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Gender=Masc|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , Number=Sing|POS=DET|PronType=Tot , Gender=Fem|Number=Sing|POS=PRON|PronType=Ind , Case=Dat|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Degree=Cmp|Number=Plur|POS=ADJ , POS=AUX|VerbForm=Ger , Gender=Fem|POS=NOUN , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , AdvType=Tim|POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Case=Acc|Gender=Fem|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Plur|POS=ADJ|VerbForm=Part , Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Sing|POS=PRON|Poss=Yes|PronType=Int,Rel , Number=Sing|POS=PRON|PronType=Int,Rel , POS=ADJ , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET|PronType=Tot , Case=Acc,Nom|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Definite=Ind|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Case=Acc,Nom|Gender=Fem|Number=Plur|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Case=Acc|Definite=Def|Gender=Masc|Number=Sing|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , POS=SPACE , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Mood=Cnd|Number=Sing|POS=VERB|Person=1|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Tot , Number=Plur|POS=PRON|PronType=Ind , Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Case=Dat|Number=Sing|POS=PRON|Person=3|PronType=Prs , POS=PART , Gender=Fem|Number=Sing|POS=DET|PronType=Ind , Number=Sing|POS=DET|PronType=Ind , Gender=Masc|NumType=Card|Number=Plur|POS=DET|PronType=Ind , Mood=Cnd|Number=Plur|POS=AUX|Person=3|VerbForm=Fin , NumForm=Digit|POS=SYM , Mood=Imp|Number=Sing|POS=VERB|Person=2|VerbForm=Fin , Case=Dat|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Mood=Cnd|Number=Sing|POS=AUX|Person=1|VerbForm=Fin , NumForm=Digit|NumType=Frac|POS=NUM , Gender=Fem|Number=Sing|POS=PRON|Poss=Yes|PronType=Int,Rel , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Case=Dat|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Definite=Ind|Gender=Masc|Number=Plur|POS=DET|PronType=Art , POS=PUNCT|PunctType=Colo , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=3|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Neg , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Case=Acc|Gender=Masc|Number=Plur|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Case=Acc|Gender=Fem|Number=Plur|POS=PRON|Person=3|PrepCase=Npr|PronType=Prs , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Case=Acc|Gender=Fem|Number=Sing|POS=AUX|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Number=Sing|POS=PRON|PronType=Neg , POS=PUNCT|PunctType=Semi , Case=Dat|Number=Plur|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|PronType=Ind , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Case=Acc,Nom|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , POS=INTJ , Gender=Masc|NumType=Card|Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Number=Plur|POS=PRON|Person=3|Poss=Yes|PronType=Prs , Case=Dat|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Inf , POS=PUNCT|PunctType=Dash , Case=Acc|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Mood=Cnd|Number=Plur|POS=VERB|Person=1|VerbForm=Fin , Gender=Masc|Number=Sing|POS=DET|PronType=Neg , Gender=Fem|NumType=Card|Number=Plur|POS=NUM , Case=Acc|Gender=Fem|Number=Plur|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Gender=Masc|Number=Sing|POS=PRON|PronType=Tot , Gender=Masc|NumType=Card|Number=Plur|POS=NUM , Gender=Masc|POS=NOUN , Case=Acc|Number=Sing|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs , Gender=Fem|NumType=Card|Number=Sing|POS=DET|PronType=Ind , Gender=Fem|NumType=Card|Number=Plur|POS=DET|PronType=Ind , Case=Acc|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|Reflex=Yes|VerbForm=Ger , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , POS=NOUN|VerbForm=Inf , Case=Dat|Number=Plur|POS=PRON|Person=1|PrepCase=Npr|PronType=Prs|Reflex=Yes , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Sing|Number[psor]=Plur|POS=DET|Person=1|Poss=Yes|PronType=Prs , Gender=Masc|NumType=Card|Number=Sing|POS=NUM , Mood=Sub|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|Poss=Yes|PronType=Int,Rel , Case=Acc|Gender=Masc|Number=Plur|POS=VERB|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf , Gender=Fem|NumType=Card|Number=Sing|POS=DET|PronType=Dem |
📄 License
This project is licensed under the GNU GPL 3.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models