It Core News Lg
CPU-optimized Italian processing pipeline including tokenization, POS tagging, dependency parsing, named entity recognition, etc.
Downloads 55
Release Time : 3/2/2022
Model Overview
Large Italian processing model provided by spaCy, supporting full natural language processing workflows including POS tagging, morphological analysis, dependency parsing, and named entity recognition.
Model Features
CPU optimization
Specifically optimized for CPU usage scenarios, suitable for environments without GPU
Comprehensive NLP processing
Provides complete natural language processing workflows from tokenization to named entity recognition
High-quality word vectors
Includes 500,000 unique vectors (300 dimensions) trained on OSCAR Common Crawl and Wikipedia using fastText
Model Capabilities
Tokenization
POS tagging
Morphological analysis
Lemmatization
Dependency parsing
Named entity recognition
Sentence segmentation
Use Cases
Text processing
Italian text analysis
Performs grammatical analysis and structural parsing of Italian text
Accurately identifies POS, syntactic relations, and named entities
Information extraction
Extracts entity information like person names, locations, and organizations from Italian text
NER F-score reaches 0.884
Linguistic research
Morphological analysis
Analyzes morphological features of Italian vocabulary
Morphological feature accuracy reaches 97.58%
🚀 it_core_news_lg
This is an Italian pipeline optimized for CPU, which can be used for various token - classification tasks such as NER, TAG, POS, etc.
📚 Documentation
Details
https://spacy.io/models/it#it_core_news_lg
This Italian pipeline is optimized for CPU. Components include tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner.
Property | Details |
---|---|
Name | it_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , tagger , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , tagger , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | UD Italian ISDT v2.8 (Bosco, Cristina; Lenci, Alessandro; Montemagni, Simonetta; Simi, Maria) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | CC BY-NC-SA 3.0 |
Author | Explosion |
Model Index
The it_core_news_lg
model has the following performance on different token - classification tasks:
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.8841501483 |
NER | NER Recall | 0.883357374 |
NER | NER F Score | 0.8837535833 |
TAG | TAG (XPOS) Accuracy | 0.9715107396 |
POS | POS (UPOS) Accuracy | 0.9751932411 |
MORPH | Morph (UFeats) Accuracy | 0.9758202247 |
LEMMA | Lemma Accuracy | 0.9749281093 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.9113077477 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8753987036 |
SENTS | Sentences F - Score | 0.9736379613 |
Label Scheme
View label scheme (443 labels for 4 components)
Component | Labels |
---|---|
morphologizer |
POS=PROPN , POS=PUNCT , Gender=Masc|POS=NOUN , Definite=Def|Gender=Fem|Number=Sing|POS=ADP|PronType=Art , Gender=Fem|Number=Sing|POS=NOUN , Gender=Masc|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=NOUN , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=AUX|VerbForm=Inf , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , POS=ADP , Gender=Fem|Number=Sing|POS=ADJ , POS=PRON|PronType=Rel , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Gender=Masc|Number=Plur|POS=NOUN , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Definite=Def|Gender=Masc|Number=Plur|POS=ADP|PronType=Art , Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , POS=VERB|VerbForm=Inf , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Number=Sing|POS=ADJ , POS=CCONJ , NumType=Card|POS=NUM , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Gender=Fem|Number=Plur|POS=ADP|PronType=Art , Gender=Fem|Number=Plur|POS=NOUN , Clitic=Yes|POS=PRON|Person=3|PronType=Prs , Gender=Fem|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Plur|POS=ADJ , POS=SPACE , Definite=Def|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , POS=ADV , POS=NOUN , Number=Sing|POS=NOUN , POS=VERB|VerbForm=Ger , Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , POS=INTJ , Clitic=Yes|Number=Sing|POS=PRON|Person=2|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|POS=NOUN , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Sing|POS=DET|PronType=Tot , Mood=Cnd|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Cnd|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|PronType=Ind , Number=Plur|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|POS=NOUN , POS=SCONJ , Number=Sing|POS=DET|PronType=Ind , POS=ADV|PronType=Neg , Clitic=Yes|POS=VERB|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=AUX|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=DET|PronType=Ind , Gender=Fem|Number=Sing|POS=PRON|PronType=Ind , POS=ADJ , Number=Sing|POS=PRON|PronType=Rel , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , Number=Sing|POS=PRON|PronType=Ind , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Plur|POS=AUX|Tense=Past|VerbForm=Part , Clitic=Yes|POS=VERB|Person=3|PronType=Prs|VerbForm=Ger , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Clitic=Yes|Gender=Masc|Number=Plur|POS=VERB|Person=3|PronType=Prs|VerbForm=Ger , Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Clitic=Yes|Gender=Masc|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|POS=PRON|PronType=Prs , Gender=Masc|Number=Plur|POS=DET|PronType=Tot , Clitic=Yes|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Clitic=Yes|Number=Sing|POS=PRON|Person=1|PronType=Prs , Degree=Cmp|Number=Plur|POS=ADJ , Clitic=Yes|Gender=Masc|Number=Plur|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Number=Sing|POS=PRON|Person=3|PronType=Prs , Degree=Cmp|Number=Sing|POS=ADJ , Gender=Masc|Number=Plur|POS=DET|PronType=Dem , Degree=Abs|POS=ADV , Clitic=Yes|Gender=Fem|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Mood=Cnd|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gender=Masc|Number=Sing|POS=AUX|Person=3|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , POS=DET|PronType=Exc , Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Past|VerbForm=Fin , Number=Sing|POS=DET|PronType=Dem , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Number=Sing|POS=DET|PronType=Int , POS=PRON|PronType=Int , Clitic=Yes|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Past|VerbForm=Fin , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|PronType=Ind , Number=Sing|POS=ADP , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Foreign=Yes|POS=X , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Clitic=Yes|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|POS=AUX|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|Gender=Masc|Mood=Imp|Number=Plur,Sing|POS=VERB|Person=1,3|PronType=Prs|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Number=Plur|POS=VERB|Tense=Pres|VerbForm=Part , POS=INTJ|Polarity=Neg , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Number=Plur|POS=PRON|PronType=Rel , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Ind , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , Clitic=Yes|Number=Plur|POS=VERB|Person=1|PronType=Prs|VerbForm=Ger , POS=INTJ|Polarity=Pos , Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Fem|Number=Sing|POS=DET|PronType=Int , POS=DET|PronType=Int , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=DET|PronType=Int , Mood=Cnd|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , POS=PRON|Person=3|PronType=Prs , Degree=Abs|Gender=Masc|Number=Plur|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Number=Sing|POS=PRON|Person=1|PronType=Prs , Gender=Masc|Number=Plur|POS=PRON|PronType=Dem , Clitic=Yes|Number=Sing|POS=PRON|Person=3|PronType=Prs , Clitic=Yes|Gender=Fem|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|Gender=Fem|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Degree=Abs|Gender=Fem|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Tot , Clitic=Yes|POS=AUX|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=DET|PronType=Tot , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Degree=Abs|Gender=Masc|Number=Sing|POS=ADJ , NumType=Ord|POS=ADJ , POS=DET|PronType=Rel , Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Gender=Masc|Number=Plur|POS=PRON|Poss=Yes|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|Person=2|PronType=Prs , Mood=Cnd|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Clitic=Yes|Number=Plur|POS=PRON|Person=2|PronType=Prs , Clitic=Yes|Number=Sing|POS=VERB|Person=1|PronType=Prs|VerbForm=Inf , Mood=Imp|Number=Sing|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Mood=Cnd|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|POS=VERB|PronType=Prs|VerbForm=Ger , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Cnd|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gend |
📄 License
This project is licensed under the CC BY - NC - SA 3.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models