It Core News Sm
CPU-optimized Italian processing pipeline provided by spaCy, including NLP functionalities such as token classification, dependency parsing, and named entity recognition
Downloads 64
Release Time : 3/2/2022
Model Overview
This is a small Italian natural language processing model suitable for text processing tasks such as part-of-speech tagging, dependency parsing, named entity recognition, etc. Optimized for CPU usage.
Model Features
CPU Optimization
Specifically optimized for CPU usage scenarios
Comprehensive NLP Features
Provides complete natural language processing functionalities from part-of-speech tagging to named entity recognition
High Accuracy
Excellent performance on Italian processing tasks, such as an NER F-score of 0.859
Model Capabilities
Part-of-speech tagging
Named entity recognition
Dependency parsing
Lemmatization
Sentence segmentation
Morphological analysis
Use Cases
Text Processing
Italian Text Analysis
Performs part-of-speech tagging and syntactic analysis on Italian texts
Accuracy up to 96.5%
Named Entity Recognition
Identifies entities such as person names, locations, and organizations in Italian texts
F-score of 0.859
Linguistic Research
Italian Morphological Analysis
Analyzes the morphological features of Italian vocabulary
Accuracy of 97.0%
đ it_core_news_sm
The it_core_news_sm
is an Italian language pipeline optimized for CPU, offering high - performance token - classification tasks such as NER, POS tagging, etc.
đ Quick Start
For details about this model, please visit: https://spacy.io/models/it#it_core_news_sm
⨠Features
This Italian pipeline is optimized for CPU and includes components like tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, and ner.
đ Documentation
Model Performance
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.8600824654 |
NER | NER Recall | 0.8579197692 |
NER | NER F Score | 0.858999756 |
TAG | TAG (XPOS) Accuracy | 0.9650368506 |
POS | POS (UPOS) Accuracy | 0.9701163888 |
MORPH | Morph (UFeats) Accuracy | 0.9701573034 |
LEMMA | Lemma Accuracy | 0.969356578 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.8969952665 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.8575397438 |
SENTS | Sentences F - Score | 0.9796640141 |
Model Information
Property | Details |
---|---|
Name | it_core_news_sm |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , tagger , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , tagger , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD Italian ISDT v2.8 (Bosco, Cristina; Lenci, Alessandro; Montemagni, Simonetta; Simi, Maria) WikiNER (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) |
License | CC BY - NC - SA 3.0 |
Author | Explosion |
Label Scheme
View label scheme (443 labels for 4 components)
Component | Labels |
---|---|
morphologizer |
POS=PROPN , POS=PUNCT , Gender=Masc|POS=NOUN , Definite=Def|Gender=Fem|Number=Sing|POS=ADP|PronType=Art , Gender=Fem|Number=Sing|POS=NOUN , Gender=Masc|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=NOUN , Definite=Ind|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , POS=AUX|VerbForm=Inf , Gender=Fem|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , POS=ADP , Gender=Fem|Number=Sing|POS=ADJ , POS=PRON|PronType=Rel , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Gender=Masc|Number=Plur|POS=DET|PronType=Art , Gender=Masc|Number=Plur|POS=NOUN , Definite=Def|Gender=Fem|Number=Sing|POS=DET|PronType=Art , Gender=Masc|Number=Sing|POS=PRON|PronType=Ind , Definite=Def|Gender=Masc|Number=Plur|POS=ADP|PronType=Art , Number=Plur|POS=ADJ , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Definite=Def|Number=Sing|POS=DET|PronType=Art , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , POS=VERB|VerbForm=Inf , Definite=Ind|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Number=Sing|POS=ADJ , POS=CCONJ , NumType=Card|POS=NUM , Definite=Def|Gender=Masc|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Gender=Fem|Number=Plur|POS=ADP|PronType=Art , Gender=Fem|Number=Plur|POS=NOUN , Clitic=Yes|POS=PRON|Person=3|PronType=Prs , Gender=Fem|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Plur|POS=ADJ , POS=SPACE , Definite=Def|Number=Sing|POS=ADP|PronType=Art , Definite=Def|Gender=Masc|Number=Sing|POS=DET|PronType=Art , Gender=Masc|NumType=Ord|Number=Sing|POS=ADJ , POS=ADV , POS=NOUN , Number=Sing|POS=NOUN , POS=VERB|VerbForm=Ger , Gender=Masc|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , POS=INTJ , Clitic=Yes|Number=Sing|POS=PRON|Person=2|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Sing|POS=AUX|Tense=Past|VerbForm=Part , Definite=Def|Gender=Fem|Number=Plur|POS=DET|PronType=Art , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|POS=NOUN , Gender=Fem|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Gender=Fem|Number=Sing|POS=DET|PronType=Tot , Mood=Cnd|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Mood=Cnd|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=PRON|PronType=Ind , Number=Plur|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Gender=Masc|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Number=Plur|POS=NOUN , POS=SCONJ , Number=Sing|POS=DET|PronType=Ind , POS=ADV|PronType=Neg , Clitic=Yes|POS=VERB|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=AUX|Tense=Past|VerbForm=Part , Gender=Fem|Number=Plur|POS=DET|PronType=Ind , Gender=Fem|Number=Sing|POS=PRON|PronType=Ind , POS=ADJ , Number=Sing|POS=PRON|PronType=Rel , Gender=Fem|NumType=Ord|Number=Sing|POS=ADJ , Number=Sing|POS=PRON|PronType=Ind , Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Masc|Number=Plur|POS=AUX|Tense=Past|VerbForm=Part , Clitic=Yes|POS=VERB|Person=3|PronType=Prs|VerbForm=Ger , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Plur|POS=DET|Poss=Yes|PronType=Prs , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Masc|Number=Plur|POS=DET|PronType=Ind , Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Clitic=Yes|Gender=Masc|Number=Plur|POS=VERB|Person=3|PronType=Prs|VerbForm=Ger , Gender=Fem|Number=Sing|POS=DET|Poss=Yes|PronType=Prs , Gender=Masc|Number=Sing|POS=DET|PronType=Dem , Clitic=Yes|Gender=Masc|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|POS=PRON|PronType=Prs , Gender=Masc|Number=Plur|POS=DET|PronType=Tot , Clitic=Yes|Gender=Masc|Number=Plur|POS=PRON|Person=3|PronType=Prs , Clitic=Yes|Number=Sing|POS=PRON|Person=1|PronType=Prs , Degree=Cmp|Number=Plur|POS=ADJ , Clitic=Yes|Gender=Masc|Number=Plur|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Number=Sing|POS=PRON|Person=3|PronType=Prs , Degree=Cmp|Number=Sing|POS=ADJ , Gender=Masc|Number=Plur|POS=DET|PronType=Dem , Degree=Abs|POS=ADV , Clitic=Yes|Gender=Fem|Number=Sing|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Mood=Cnd|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gender=Masc|Number=Sing|POS=AUX|Person=3|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Sing|POS=DET|PronType=Dem , POS=DET|PronType=Exc , Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Past|VerbForm=Fin , Number=Sing|POS=DET|PronType=Dem , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Gender=Fem|NumType=Ord|Number=Plur|POS=ADJ , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin , Number=Sing|POS=DET|PronType=Int , POS=PRON|PronType=Int , Clitic=Yes|Gender=Masc|Number=Sing|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Past|VerbForm=Fin , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|PronType=Ind , Number=Sing|POS=ADP , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Fut|VerbForm=Fin , Foreign=Yes|POS=X , Mood=Sub|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Clitic=Yes|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|POS=AUX|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|Gender=Masc|Mood=Imp|Number=Plur,Sing|POS=VERB|Person=1,3|PronType=Prs|Tense=Pres|VerbForm=Fin , Mood=Sub|Number=Sing|POS=AUX|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Number=Plur|POS=VERB|Tense=Pres|VerbForm=Part , POS=INTJ|Polarity=Neg , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Number=Plur|POS=PRON|PronType=Rel , Mood=Sub|Number=Plur|POS=VERB|Person=3|Tense=Imp|VerbForm=Fin , Gender=Fem|Number=Sing|POS=DET|PronType=Ind , Gender=Fem|Number=Sing|POS=PRON|PronType=Dem , Mood=Sub|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=DET|PronType=Dem , Gender=Masc|Number=Plur|POS=PRON|PronType=Rel , Clitic=Yes|Number=Plur|POS=VERB|Person=1|PronType=Prs|VerbForm=Ger , POS=INTJ|Polarity=Pos , Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Gender=Fem|Number=Sing|POS=DET|PronType=Int , POS=DET|PronType=Int , Gender=Masc|NumType=Ord|Number=Plur|POS=ADJ , Gender=Fem|Number=Plur|POS=DET|PronType=Int , Mood=Cnd|Number=Plur|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , POS=PRON|Person=3|PronType=Prs , Degree=Abs|Gender=Masc|Number=Plur|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Ind , Number=Sing|POS=PRON|Person=1|PronType=Prs , Gender=Masc|Number=Plur|POS=PRON|PronType=Dem , Clitic=Yes|Number=Sing|POS=PRON|Person=3|PronType=Prs , Clitic=Yes|Gender=Fem|POS=VERB|Person=3|PronType=Prs|VerbForm=Inf , Clitic=Yes|Gender=Fem|POS=PRON|Person=3|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Degree=Abs|Gender=Fem|Number=Sing|POS=ADJ , Gender=Masc|Number=Sing|POS=DET|PronType=Tot , Clitic=Yes|POS=AUX|PronType=Prs|VerbForm=Inf , Gender=Fem|Number=Plur|POS=DET|PronType=Tot , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Gender=Fem|Number=Plur|POS=PRON|PronType=Dem , Degree=Abs|Gender=Masc|Number=Sing|POS=ADJ , NumType=Ord|POS=ADJ , POS=DET|PronType=Rel , Gender=Masc|Number=Sing|POS=PRON|PronType=Rel , Gender=Masc|Number=Plur|POS=PRON|Poss=Yes|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Imp|Number=Plur|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gender=Fem|Number=Sing|POS=PRON|Person=3|PronType=Prs , Number=Sing|POS=PRON|Person=2|PronType=Prs , Mood=Cnd|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=2|Tense=Pres|VerbForm=Fin , Clitic=Yes|Number=Plur|POS=PRON|Person=2|PronType=Prs , Clitic=Yes|Number=Sing|POS=VERB|Person=1|PronType=Prs|VerbForm=Inf , Mood=Imp|Number=Sing|POS=VERB|Person=2|Tense=Pres|VerbForm=Fin , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=2|Tense=Fut|VerbForm=Fin , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Fut|VerbForm=Fin , Mood=Cnd|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|POS=VERB|PronType=Prs|VerbForm=Ger , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Imp|VerbForm=Fin , Mood=Ind|Number=Plur|POS=AUX|Person=1|Tense=Imp|VerbForm=Fin , Mood=Cnd|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin , Clitic=Yes|Gender=Masc|Number=Plur|POS=VERB|Person=3|PronType=Prs|Tense=Past|VerbForm=Part , Number=Sing|POS=PRON|PronType=Ind |
đ License
This model is licensed under CC BY - NC - SA 3.0
.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models
Š 2025AIbase