Nl Core News Lg
CPU-optimized Dutch processing pipeline containing various natural language processing components.
Downloads 58
Release Time : 3/2/2022
Model Overview
This is a natural language processing model for Dutch, including functions such as part-of-speech tagging, named entity recognition, dependency parsing, and more.
Model Features
Multitask processing
Supports multiple NLP tasks simultaneously, including part-of-speech tagging, named entity recognition, and dependency parsing.
CPU optimization
Specifically optimized for CPU usage.
High-quality word vectors
Includes 500,000 unique vectors (300 dimensions).
Comprehensive coverage
Supports various grammatical features and morphological variations in Dutch.
Model Capabilities
Part-of-speech tagging
Named entity recognition
Morphological analysis
Lemmatization
Dependency parsing
Sentence segmentation
Use Cases
Text analysis
Dutch document processing
Automatically analyzes part-of-speech, entities, and grammatical structures in Dutch documents.
Accuracy exceeds 95%
Information extraction
Extracts entity information such as person names, locations, and organization names from Dutch text.
F1 score 76.73%
Language learning
Dutch grammar analysis
Helps learners understand Dutch sentence structure and part-of-speech variations.
🚀 nl_core_news_lg
A Dutch language processing pipeline optimized for CPU, offering comprehensive token - classification tasks.
📚 Documentation
Details: https://spacy.io/models/nl#nl_core_news_lg
This is a Dutch pipeline optimized for CPU. Its components include tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, and ner.
Property | Details |
---|---|
Name | nl_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , morphologizer , tagger , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , morphologizer , tagger , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 500000 keys, 500000 unique vectors (300 dimensions) |
Sources | UD Dutch LassySmall v2.8 (Bouma, Gosse; van Noord, Gertjan) Dutch NER Annotations for UD LassySmall (NLP Town) UD Dutch Alpino v2.8 (Zeman, Daniel; Žabokrtský, Zdeněk; Bouma, Gosse; van Noord, Gertjan) Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia) (Explosion) |
License | CC BY - SA 4.0 |
Author | Explosion |
Label Scheme
View label scheme (323 labels for 4 components)
Component | Labels |
---|---|
morphologizer |
POS=PRON|Person=3|PronType=Dem , Number=Sing|POS=AUX|Tense=Pres|VerbForm=Fin , POS=ADV , POS=VERB|VerbForm=Part , POS=PUNCT , Number=Sing|POS=AUX|Tense=Past|VerbForm=Fin , POS=ADP , POS=NUM , Number=Plur|POS=NOUN , POS=VERB|VerbForm=Inf , POS=SCONJ , Definite=Def|POS=DET , Gender=Com|Number=Sing|POS=NOUN , Number=Sing|POS=VERB|Tense=Pres|VerbForm=Fin , Degree=Pos|POS=ADJ , Gender=Neut|Number=Sing|POS=PROPN , Gender=Com|Number=Sing|POS=PROPN , POS=AUX|VerbForm=Inf , Number=Sing|POS=VERB|Tense=Past|VerbForm=Fin , POS=DET , Gender=Neut|Number=Sing|POS=NOUN , POS=PRON|Person=3|PronType=Prs , POS=CCONJ , Number=Plur|POS=VERB|Tense=Pres|VerbForm=Fin , POS=PRON|Person=3|PronType=Ind , Degree=Cmp|POS=ADJ , Case=Nom|POS=PRON|Person=1|PronType=Prs , Definite=Ind|POS=DET , Case=Nom|POS=PRON|Person=3|PronType=Prs , POS=PRON|Person=3|Poss=Yes|PronType=Prs , Number=Plur|POS=AUX|Tense=Pres|VerbForm=Fin , POS=PRON|PronType=Rel , Case=Acc|POS=PRON|Person=1|PronType=Prs , Number=Plur|POS=VERB|Tense=Past|VerbForm=Fin , Gender=Com,Neut|Number=Sing|POS=NOUN , Case=Acc|POS=PRON|Person=3|PronType=Prs|Reflex=Yes , Case=Acc|POS=PRON|Person=3|PronType=Prs , POS=PROPN , POS=PRON|PronType=Ind , POS=PRON|Person=3|PronType=Int , Case=Acc|POS=PRON|PronType=Rcp , Number=Plur|POS=AUX|Tense=Past|VerbForm=Fin , Number=Sing|POS=NOUN , POS=PRON|Person=1|Poss=Yes|PronType=Prs , POS=SYM , Abbr=Yes|POS=X , Gender=Com,Neut|Number=Sing|POS=PROPN , Degree=Sup|POS=ADJ , POS=ADJ , Number=Sing|POS=PROPN , POS=PRON|PronType=Dem , POS=AUX|VerbForm=Part , POS=SPACE , POS=PRON|Person=3|PronType=Rel , Number=Plur|POS=PROPN , POS=PRON|Person=2|Poss=Yes|PronType=Prs , Case=Dat|POS=PRON|PronType=Dem , Case=Nom|POS=PRON|Person=2|PronType=Prs , POS=INTJ , Case=Acc|POS=PRON|Person=2|PronType=Prs , Case=Gen|POS=PRON|Person=3|Poss=Yes|PronType=Prs , POS=PRON|PronType=Int , POS=PRON|Person=2|PronType=Prs , POS=PRON|Person=3 , Case=Gen|POS=PRON|Person=2|PronType=Prs , POS=X |
tagger |
ADJ|nom|basis|met-e|mv-n , ADJ|nom|basis|met-e|zonder-n|bijz , ADJ|nom|basis|met-e|zonder-n|stan , ADJ|nom|basis|zonder|mv-n , ADJ|nom|basis|zonder|zonder-n , ADJ|nom|comp|met-e|mv-n , ADJ|nom|comp|met-e|zonder-n|stan , ADJ|nom|sup|met-e|mv-n , ADJ|nom|sup|met-e|zonder-n|bijz , ADJ|nom|sup|met-e|zonder-n|stan , ADJ|nom|sup|zonder|zonder-n , ADJ|postnom|basis|met-s , ADJ|postnom|basis|zonder , ADJ|postnom|comp|met-s , ADJ|prenom|basis|met-e|bijz , ADJ|prenom|basis|met-e|stan , ADJ|prenom|basis|zonder , ADJ|prenom|comp|met-e|stan , ADJ|prenom|comp|zonder , ADJ|prenom|sup|met-e|stan , ADJ|prenom|sup|zonder , ADJ|vrij|basis|zonder , ADJ|vrij|comp|zonder , ADJ|vrij|dim|zonder , ADJ|vrij|sup|zonder , BW , LET , LID|bep|dat|evmo , LID|bep|gen|evmo , LID|bep|gen|rest3 , LID|bep|stan|evon , LID|bep|stan|rest , LID|onbep|stan|agr , N|eigen|ev|basis|gen , N|eigen|ev|basis|genus|stan , N|eigen|ev|basis|onz|stan , N|eigen|ev|basis|zijd|stan , N|eigen|ev|dim|onz|stan , N|eigen|mv|basis , N|soort|ev|basis|dat , N|soort|ev|basis|gen , N|soort|ev|basis|genus|stan , N|soort|ev|basis|onz|stan , N|soort|ev|basis|zijd|stan , N|soort|ev|dim|onz|stan , N|soort|mv|basis , N|soort|mv|dim , SPEC|afgebr , SPEC|afk , SPEC|deeleigen , SPEC|enof , SPEC|meta , SPEC|symb , SPEC|vreemd , TSW , TW|hoofd|nom|mv-n|basis , TW|hoofd|nom|mv-n|dim , TW|hoofd|nom|zonder-n|basis , TW|hoofd|nom|zonder-n|dim , TW|hoofd|prenom|stan , TW|hoofd|vrij , TW|rang|nom|mv-n , TW|rang|nom|zonder-n , TW|rang|prenom|stan , VG|neven , VG|onder , VNW|aanw|adv-pron|obl|vol|3o|getal , VNW|aanw|adv-pron|stan|red|3|getal , VNW|aanw|det|dat|nom|met-e|zonder-n , VNW|aanw|det|dat|prenom|met-e|evmo , VNW|aanw|det|gen|prenom|met-e|rest3 , VNW|aanw|det|stan|nom|met-e|mv-n , VNW|aanw|det|stan|nom|met-e|zonder-n , VNW|aanw|det|stan|prenom|met-e|rest , VNW|aanw|det|stan|prenom|zonder|agr , VNW|aanw|det|stan|prenom|zonder|evon , VNW|aanw|det|stan|prenom|zonder|rest , VNW|aanw|det|stan|vrij|zonder , VNW|aanw|pron|gen|vol|3m|ev , VNW|aanw|pron|stan|vol|3o|ev , VNW|aanw|pron|stan|vol|3|getal , VNW|betr|det|stan|nom|met-e|zonder-n , VNW|betr|det|stan|nom|zonder|zonder-n , VNW|betr|pron|stan|vol|3|ev , VNW|betr|pron|stan|vol|persoon|getal , VNW|bez|det|gen|vol|3|ev|prenom|met-e|rest3 , VNW|bez|det|stan|nadr|2v|mv|prenom|zonder|agr , VNW|bez|det|stan|red|1|ev|prenom|zonder|agr , VNW|bez|det|stan|red|2v|ev|prenom|zonder|agr , VNW|bez|det|stan|red|3|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|1|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|1|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|1|mv|prenom|met-e|rest , VNW|bez|det|stan|vol|1|mv|prenom|zonder|evon , VNW|bez|det|stan|vol|2v|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|2|getal|prenom|zonder|agr , VNW|bez|det|stan|vol|3m|ev|nom|met-e|zonder-n , VNW|bez|det|stan|vol|3m|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|3p|mv|prenom|met-e|rest , VNW|bez|det|stan|vol|3v|ev|nom|met-e|zonder-n , VNW|bez|det|stan|vol|3v|ev|prenom|met-e|rest , VNW|bez|det|stan|vol|3|ev|prenom|zonder|agr , VNW|bez|det|stan|vol|3|mv|prenom|zonder|agr , VNW|excl|pron|stan|vol|3|getal , VNW|onbep|adv-pron|gen|red|3|getal , VNW|onbep|adv-pron|obl|vol|3o|getal , VNW|onbep|det|stan|nom|met-e|mv-n , VNW|onbep|det|stan|nom|met-e|zonder-n , VNW|onbep|det|stan|nom|zonder|zonder-n , VNW|onbep|det|stan|prenom|met-e|agr , VNW|onbep|det|stan|prenom|met-e|evz , VNW|onbep|det|stan|prenom|met-e|mv , VNW|onbep|det|stan|prenom|met-e|rest , VNW|onbep|det|stan|prenom|zonder|agr , VNW|onbep|det|stan|prenom|zonder|evon , VNW|onbep|det|stan|vrij|zonder , VNW|onbep|grad|gen|nom|met-e|mv-n|basis , VNW|onbep|grad|stan|nom|met-e|mv-n|basis , VNW|onbep|grad|stan|nom|met-e|mv-n|sup , VNW|onbep|grad|stan|nom|met-e|zonder-n|basis , VNW|onbep|grad|stan|nom|met-e|zonder-n|sup , VNW|onbep|grad|stan|prenom|met-e|agr|basis , VNW|onbep|grad|stan|prenom|met-e|agr|comp , VNW|onbep|grad|stan|prenom|met-e|agr|sup , VNW|onbep|grad|stan|prenom|met-e|mv|basis , VNW|onbep|grad|stan|prenom|zonder|agr|basis , VNW|onbep|grad|stan|prenom|zonder|agr|comp , VNW|onbep|grad|stan|vrij|zonder|basis , VNW|onbep|grad|stan|vrij|zonder|comp , VNW|onbep|grad|stan|vrij|zonder|sup , VNW|onbep|pron|gen|vol|3p|ev , VNW|onbep|pron|stan|vol|3o|ev , VNW|onbep|pron|stan|vol|3p|ev , VNW|pers|pron|gen|vol|2|getal , VNW|pers|pron|nomin|nadr|3m|ev|masc , VNW|pers|pron|nomin|nadr|3v|ev|fem , VNW|pers|pron|nomin|red|1|mv , VNW|pers|pron|nomin|red|2v|ev , VNW|pers|pron|nomin|red|2|getal , VNW|pers|pron|nomin|red|3p|ev|masc , VNW|pers|pron|nomin|red|3|ev|masc , VNW|pers|pron|nomin|vol|1|ev , VNW|pers|pron|nomin|vol|1|mv , VNW|pers|pron|nomin|vol|2b|getal , VNW|pers|pron|nomin|vol|2v|ev , VNW|pers|pron|nomin|vol|2|getal , VNW|pers|pron|nomin|vol|3p|mv , VNW|pers|pron|nomin|vol|3v|ev|fem , VNW|pers|pron|nomin|vol|3|ev|masc , VNW|pers|pron|obl|nadr|3m|ev|masc , VNW|pers|pron|obl|red|3|ev|masc , VNW|pers|pron|obl|vol|2v|ev , VNW|pers|pron|obl|vol|3p|mv , VNW|pers|pron|obl|vol|3|ev|masc , VNW|pers|pron|obl|vol|3|getal|fem , VNW|pers|pron|stan|nadr|2v|mv , VNW|pers|pron|stan|red|3|ev|fem , VNW|pers|pron|stan|red|3|ev|onz , VNW|pers|pron|stan|red|3|mv , VNW|pr|pron|obl|nadr|1|ev , VNW|pr|pron|obl|nadr|2v|getal , VNW|pr|pron|obl|nadr|2|getal , VNW|pr|pron|obl|red|1|ev , VNW|pr|pron|obl|red|2v|getal , VNW|pr|pron|obl|vol|1|ev , VNW|pr|pron|obl|vol|1|mv , VNW|pr|pron|obl|vol|2|getal , VNW|recip|pron|gen|vol|persoon|mv , VNW|recip|pron|obl|vol|persoon|mv , VNW|refl|pron|obl|nadr|3|getal , VNW|refl|pron|obl|red|3|getal , VNW|vb|adv-pron|obl|vol|3o|getal , VNW|vb|det|stan|nom|met-e|zonder-n , VNW|vb|det|stan|prenom|met-e|rest , VNW|vb|det|stan|prenom|zonder|evon , VNW|vb|pron|gen|vol|3m|ev , VNW|vb|pron|gen|vol|3p|mv , VNW|vb|pron|gen|vol|3v|ev , VNW|vb|pron|stan|vol|3o|ev , VNW|vb|pron|stan|vol|3p|getal , VZ|fin , VZ|init , VZ|versm , WW|inf|nom|zonder|zonder-n , WW|inf|prenom|met-e , WW|inf|vrij|zonder , WW|od|nom|met-e|mv-n , WW|od|nom|met-e|zonder-n , WW|od|prenom|met-e , WW|od|prenom|zonder , WW|od|vrij|zonder , WW|pv|conj|ev , WW|pv|tgw|ev , WW|pv|tgw|met-t , WW|pv|tgw|mv , WW|pv|verl|ev , WW|pv|verl|mv , WW|vd|nom|met-e|mv-n , WW|vd|nom|met-e|zonder-n , WW|vd|prenom|met-e , WW|vd|prenom|zonder , WW|vd|vrij|zonder , _SP |
parser |
ROOT , acl , acl:relcl , advcl , advmod , amod , appos , aux , aux:pass , case , cc , ccomp , compound:prt , conj , cop , csubj , dep , det , expl , expl:pv , fixed , flat , iobj , mark , nmod , nmod:poss , nsubj , nsubj:pass , nummod , obj , obl , obl:agent , orphan , parataxis , punct , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
📄 License
This project is licensed under the CC BY - SA 4.0
license.
🔧 Technical Details
Model Index
- Name: nl_core_news_lg
- Results:
- Task: NER (Token - Classification)
- Metrics:
- NER Precision: 0.7850940666
- NER Recall: 0.7503457815
- NER F Score: 0.7673267327
- Metrics:
- Task: TAG (Token - Classification)
- Metrics:
- TAG (XPOS) Accuracy: 0.9514067612
- Metrics:
- Task: POS (Token - Classification)
- Metrics:
- POS (UPOS) Accuracy: 0.9638822246
- Metrics:
- Task: MORPH (Token - Classification)
- Metrics:
- Morph (UFeats) Accuracy: 0.9628967172
- Metrics:
- Task: LEMMA (Token - Classification)
- Metrics:
- Lemma Accuracy: 0.9556229147
- Metrics:
- Task: UNLABELED_DEPENDENCIES (Token - Classification)
- Metrics:
- Unlabeled Attachment Score (UAS): 0.8702417761
- Metrics:
- Task: LABELED_DEPENDENCIES (Token - Classification)
- Metrics:
- Labeled Attachment Score (LAS): 0.8253421186
- Metrics:
- Task: SENTS (Token - Classification)
- Metrics:
- Sentences F - Score: 0.8731501057
- Metrics:
- Task: NER (Token - Classification)
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models