🚀 Maestrale chat beta ༄
Maestrale chat beta ༄ is a language model tailored for the Italian language, offering enhanced capabilities in various aspects such as truthfulness, math, and reasoning. It uses the ChatML prompt format and is suitable for a range of applications.
📦 Model Information
Property |
Details |
Model Name |
maestrale-chat-v0.4-beta |
Language |
Italian |
License |
cc-by-nc-4.0 |
Tags |
sft, it, mistral, chatml, axolotl |
Prompt Template |
< |
✨ Features
- Language Model: Mistral-7b for the Italian language, continued pre-training for Italian on a curated large-scale high-quality corpus, merged with occiglot.
- Fine-Tuning: SFT performed on 1.7M convs/instructions for 2 epochs.
- DPO: Aligned with DPO on multiple datasets.
- v0.4 Enhancements: Agent, improved truthfullness, improved Math & Reasoning capabilities, Mermaid mindmaps, more latin translations, poems, etc.
📊 Scores
Tasks |
Version |
Filter |
n-shot |
Metric |
Value |
|
Stderr |
hellaswag_it |
1 |
none |
0 |
acc |
0.5270 |
± |
0.0052 |
|
|
none |
0 |
acc_norm |
0.7037 |
± |
0.0048 |
arc_it |
1 |
none |
0 |
acc |
0.1771 |
± |
0.0112 |
|
|
none |
0 |
acc_norm |
0.5218 |
± |
0.0146 |
m_mmlu_it |
0 |
none |
5 |
acc |
0.5623 |
± |
0.0043 |
💻 Usage Examples
Basic Usage
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
GenerationConfig,
TextStreamer
)
import torch
tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.4-beta")
model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.4-beta", load_in_8bit=True, device_map="auto")
gen = GenerationConfig(
do_sample=True,
temperature=0.7,
repetition_penalty=1.2,
top_k=50,
top_p=0.95,
max_new_tokens=500,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.convert_tokens_to_ids("<|im_end|>")
)
streamer = TextStreamer(tokenizer, skip_prompt=True)
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": "{prompt}"}
]
with torch.no_grad():
temp = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(temp, return_tensors="pt").to("cuda")
_ = model.generate(
**inputs,
streamer=streamer,
generation_config=gen
)
Advanced Usage
Mindmaps
messages = [
{"role": "system", "content": "Fornisci una mindmap Mermaid sull'argomento in input."},
{"role": "user", "content": "Argomento: [argomento]"}
]
SQL
schema = "[db schema]"
messages = [
{"role": "system", "content": f"Sei un assistente SQL e il tuo compito è convertire la domanda dell'utente in codice SQL valido rispetto allo schema del database fornito.\n\nSchema:\n```sql\n{schema}\n```"},
{"role": "user", "content": "Conta il numero di X prodotti dall'azienda Y"}
]
Article from index
messages = [
{"role": "system", "content": "Sei un assistente utile."},
{"role": "user", "content": (
"Scrivi un articolo a partire dal titolo e dall'indice dei contenuti.\n\n"
"Titolo: [titolo]\n\n"
"Indice:\n\n"
"1. Introduzione\n"
"2. [heading]\n"
"..."
)}
]
⚠️ Intended uses & limitations
It's a beta version; it's quite safe
, and it can refuse to answer to toxic questions.

📄 License
This model is licensed under cc-by-nc-4.0.