Sv Core News Lg
A Swedish natural language processing pipeline optimized for CPU, including complete NLP components such as part-of-speech tagging and named entity recognition
Downloads 56
Release Time : 5/2/2022
Model Overview
A large Swedish processing model provided by spaCy, supporting natural language processing tasks such as part-of-speech tagging, dependency analysis, and named entity recognition
Model Features
Complete NLP processing flow
Integrates complete natural language processing components such as part-of-speech tagging, dependency analysis, and named entity recognition
CPU optimization
Specifically optimized for CPU usage scenarios
High - quality word vectors
Contains 200,000 300 - dimensional floret word vectors
Trainable lemmatizer
Provides a trainable lemmatization component with an accuracy of 95.59%
Model Capabilities
Part-of-speech tagging
Named entity recognition
Dependency analysis
Lemmatization
Sentence segmentation
Morphological analysis
Use Cases
Text analysis
Swedish text processing
Perform part-of-speech tagging and syntactic analysis on Swedish text
The accuracy of part-of-speech tagging reaches 96.36%
Information extraction
Identify named entities from Swedish text
The NER F - score reaches 80.81%
Linguistic research
Morphological analysis
Analyze the morphological features of Swedish words
The accuracy of morphological features reaches 95.87%
🚀 sv_core_news_lg
The sv_core_news_lg
is a Swedish language processing pipeline optimized for CPU, offering high - performance token - classification tasks.
🚀 Quick Start
For detailed information about this model, please visit Details.
✨ Features
This Swedish pipeline is optimized for CPU and includes components such as tok2vec
, tagger
, morphologizer
, parser
, lemmatizer
(trainable_lemmatizer), senter
, and ner
.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | sv_core_news_lg |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | floret (200000, 300) |
Training Data | UD Swedish Talbanken v2.8 (Nivre, Joakim; Smith, Aaron) Stockholm - Umeå Corpus (SUC) v3.0 (Språkbanken) Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl) (Explosion) |
License | CC BY - SA 4.0 |
Author | Explosion |
Label Scheme
View label scheme (381 labels for 4 components)
Component | Labels |
---|---|
tagger |
AB , AB|AN , AB|KOM , AB|POS , AB|SMS , AB|SUV , DT|NEU|SIN|DEF , DT|NEU|SIN|IND , DT|NEU|SIN|IND/DEF , DT|NEU|PLU|DEF , DT|NEU|PLU|IND , DT|NEU|PLU|IND/DEF , DT|UTR/NEU|PLU|DEF , DT|UTR/NEU|PLU|IND , DT|UTR/NEU|PLU|IND/DEF , DT|UTR/NEU|SIN/PLU|IND , DT|UTR/NEU|SIN|DEF , DT|UTR/NEU|SIN|IND , DT|UTR|SIN|DEF , DT|UTR|SIN|IND , DT|UTR|SIN|IND/DEF , HA , HD|NEU|SIN|IND , HD|UTR/NEU|PLU|IND , HD|UTR|SIN|IND , HP|-|-|- , HP|NEU|SIN|IND , HP|UTR/NEU|PLU|IND , HP|UTR|SIN|IND , HS|DEF , IE , IN , JJ , JJ|AN , JJ|KOM|UTR/NEU|SIN/PLU|IND/DEF|NOM , JJ|POS|MAS|SIN|DEF|GEN , JJ|POS|MAS|SIN|DEF|NOM , JJ|POS|NEU|SIN|IND/DEF|NOM , JJ|POS|NEU|SIN|IND|NOM , JJ|POS|UTR/NEU|PLU|IND/DEF|GEN , JJ|POS|UTR/NEU|PLU|IND/DEF|NOM , JJ|POS|UTR/NEU|PLU|IND|NOM , JJ|POS|UTR/NEU|SIN/PLU|IND/DEF|NOM , JJ|POS|UTR/NEU|SIN|DEF|NOM , JJ|POS|UTR|-|-|SMS , JJ|POS|UTR|SIN|IND/DEF|NOM , JJ|POS|UTR|SIN|IND|GEN , JJ|POS|UTR|SIN|IND|NOM , JJ|SUV|MAS|SIN|DEF|NOM , JJ|SUV|UTR/NEU|PLU|DEF|NOM , JJ|SUV|UTR/NEU|SIN/PLU|DEF|NOM , JJ|SUV|UTR/NEU|SIN/PLU|IND|NOM , KN , MAD , MID , NN , NN|-|-|-|- , NN|AN , NN|NEU|-|-|SMS , NN|NEU|PLU|DEF|GEN , NN|NEU|PLU|DEF|NOM , NN|NEU|PLU|IND|GEN , NN|NEU|PLU|IND|NOM , NN|NEU|SIN|DEF|GEN , NN|NEU|SIN|DEF|NOM , NN|NEU|SIN|IND , NN|NEU|SIN|IND|GEN , NN|NEU|SIN|IND|NOM , NN|SMS , NN|UTR|-|-|- , NN|UTR|-|-|SMS , NN|UTR|PLU|DEF|GEN , NN|UTR|PLU|DEF|NOM , NN|UTR|PLU|IND|GEN , NN|UTR|PLU|IND|NOM , NN|UTR|SIN|DEF|GEN , NN|UTR|SIN|DEF|NOM , NN|UTR|SIN|IND|GEN , NN|UTR|SIN|IND|NOM , PAD , PC|PRF|NEU|SIN|IND|NOM , PC|PRF|UTR/NEU|PLU|IND/DEF|GEN , PC|PRF|UTR/NEU|PLU|IND/DEF|NOM , PC|PRF|UTR/NEU|SIN|DEF|NOM , PC|PRF|UTR|SIN|IND|NOM , PC|PRS|UTR/NEU|SIN/PLU|IND/DEF|NOM , PL , PM , PM|GEN , PM|NOM , PM|SMS , PN|MAS|SIN|DEF|SUB/OBJ , PN|NEU|SIN|DEF , PN|NEU|SIN|DEF|SUB/OBJ , PN|NEU|SIN|IND|SUB/OBJ , PN|UTR/NEU|PLU|DEF|OBJ , PN|UTR/NEU|PLU|DEF|SUB , PN|UTR/NEU|PLU|DEF|SUB/OBJ , PN|UTR/NEU|PLU|IND|SUB/OBJ , PN|UTR/NEU|SIN/PLU|DEF|OBJ , PN|UTR|PLU|DEF|OBJ , PN|UTR|PLU|DEF|SUB , PN|UTR|SIN|DEF|NOM , PN|UTR|SIN|DEF|OBJ , PN|UTR|SIN|DEF|SUB , PN|UTR|SIN|DEF|SUB/OBJ , PN|UTR|SIN|IND|NOM , PN|UTR|SIN|IND|SUB , PN|UTR|SIN|IND|SUB/OBJ , PP , PS|NEU|SIN|DEF , PS|UTR/NEU|PLU|DEF , PS|UTR/NEU|SIN/PLU|DEF , PS|UTR|SIN|DEF , RG|NEU|SIN|IND|NOM , RG|NOM , RG|SMS , RG|UTR|SIN|IND|NOM , RO|MAS|SIN|IND/DEF|NOM , RO|NOM , SN , UO , VB|AN , VB|IMP|AKT , VB|IMP|SFO , VB|INF|AKT , VB|INF|SFO , VB|KON|PRS|AKT , VB|KON|PRT|AKT , VB|PRS|AKT , VB|PRS|SFO , VB|PRT|AKT , VB|PRT|SFO , VB|SUP|AKT , VB|SUP|SFO , _SP |
morphologizer |
Case=Nom|Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , POS=ADP , Case=Nom|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , POS=PUNCT , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Prs , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , Abbr=Yes|POS=ADV , POS=SCONJ , POS=ADV , Case=Nom|Definite=Ind|Gender=Com|NumType=Card|Number=Sing|POS=NUM , Mood=Ind|POS=AUX|Tense=Pres|VerbForm=Fin|Voice=Act , POS=PART , POS=VERB|VerbForm=Inf , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Number=Plur|POS=DET|PronType=Tot , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Number=Plur|POS=ADJ , Case=Nom|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=CCONJ , Definite=Def|Number=Plur|POS=DET|PronType=Art , POS=PRON|PronType=Rel , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Dem , Degree=Pos|POS=ADV , Definite=Def|Number=Plur|POS=DET|PronType=Dem , Case=Nom|Definite=Ind|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Def|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , POS=VERB|VerbForm=Sup|Voice=Act , Case=Nom|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , POS=PART|Polarity=Neg , Case=Nom|Degree=Pos|POS=ADJ , Case=Gen|Definite=Ind|Gender=Com|Number=Plur|POS=NOUN , Degree=Cmp|POS=ADV , POS=VERB|VerbForm=Inf|Voice=Pass , Case=Nom|Definite=Ind|Degree=Pos|Number=Plur|POS=ADJ , Case=Nom|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Degree=Sup|POS=ADV , Case=Nom|NumType=Card|POS=NUM , Abbr=Yes|POS=NOUN , Case=Nom|Definite=Def|Degree=Sup|POS=ADJ , Case=Gen|Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Act , POS=VERB|VerbForm=Inf|Voice=Act , Case=Nom|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin , Case=Gen|Definite=Ind|Gender=Neut|Number=Plur|POS=NOUN , POS=AUX|VerbForm=Inf|Voice=Act , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Nom|Number=Plur|POS=ADJ|Tense=Past|VerbForm=Part , POS=AUX|VerbForm=Sup|Voice=Act , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Rcp , POS=SPACE , POS=VERB|VerbForm=Sup|Voice=Pass , Mood=Ind|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Def|Degree=Pos|Number=Sing|POS=ADJ , Case=Nom|Degree=Cmp|POS=ADJ , Definite=Ind|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Art , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Definite=Ind|POS=DET|PronType=Ind , Case=Nom|Definite=Def|Number=Sing|POS=ADJ|Tense=Past|VerbForm=Part , Case=Nom|POS=ADJ|Tense=Pres|VerbForm=Part , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Ind , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Dem , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Art , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , Case=Acc|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Int , Definite=Def|Gender=Com|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|Poss=Yes|PronType=Prs , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Def|Number=Plur|POS=PRON|PronType=Dem , Definite=Def|Number=Plur|POS=PRON|Poss=Yes|PronType=Prs , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Nom|Definite=Def|Degree=Sup|Number=Plur|POS=ADJ , Case=Nom|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Gender=Com|Number=Sing|POS=DET|PronType=Tot , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Dem , Case=Gen|Definite=Ind|Gender=Com|Number=Sing|POS=NOUN , POS=NOUN , Case=Nom|POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Number=Plur|POS=PRON|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Ind , Definite=Ind|Number=Plur|POS=PRON|PronType=Ind , Definite=Def|POS=PRON|Poss=Yes|PronType=Ind , Case=Gen|Definite=Def|Gender=Neut|Number=Sing|POS=NOUN , Gender=Com|POS=NOUN , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Tot , Case=Gen|Definite=Def|Gender=Com|Number=Sing|POS=NOUN , Case=Acc|Definite=Def|POS=PRON|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Prs , Case=Nom|POS=PROPN , Case=Nom|Number=Plur|POS=VERB|Tense=Past|VerbForm=Part , Case=Nom|Definite=Def|Gender=Com|Number=Plur|POS=PRON|PronType=Prs , Definite=Def|Number=Plur|POS=DET|PronType=Prs , Case=Gen|Number=Plur|POS=ADJ|Tense=Past|VerbForm=Part , Case=Acc|Definite=Def|Gender=Com|Number=Plur|POS=PRON|PronType=Prs , Definite=Ind|Number=Plur|POS=PRON|PronType=Rel , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin , Definite=Ind|Number=Plur|POS=PRON|PronType=Int , Number=Plur|POS=DET|PronType=Ind , Case=Gen|POS=PROPN , POS=PROPN , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Int , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Tot , Gender=Neut|POS=NOUN , Case=Gen|Definite=Def|Gender=Com|Number=Plur|POS=NOUN , Definite=Ind|Number=Plur|POS=DET|PronType=Int , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Neg , POS=VERB|VerbForm=Sup , Case=Gen|Definite=Def|Gender=Neut|Number=Plur|POS=NOUN , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Case=Nom|Definite=Ind|Gender=Neut|NumType=Card|Number=Sing|POS=NUM , Foreign=Yes|POS=NOUN , Foreign=Yes|POS=ADJ , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Number=Plur|POS=DET|PronType=Ind , POS=SYM , Case=Nom|Degree=Pos|Gender=Neut|Number=Sing|POS=ADJ , Definite=Def|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Int , Case=Nom|Definite=Ind|Degree=Sup|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Dem , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Neg , Mood=Sub|POS=AUX|Tense=Past|VerbForm=Fin|Voice=Act , Degree=Pos|Gender=Com|POS=ADJ , Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Case=Nom|Definite=Ind|Gender=Neut|Number=Sing|POS=VERB|Tense=Past|VerbForm=Part , Definite=Def|Number=Plur|POS=PRON|PronType=Ind , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Prs , Definite=Ind|POS=DET|PronType=Prs , Definite=Def|Gender=Neut|Number=Sing|POS=DET|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Rel , Case=Gen|Degree=Pos|Number=Plur|POS=ADJ , Definite=Def|Number=Plur|POS=PRON|Poss=Yes|PronType=Ind , Definite=Def|Gender=Com|Number=Sing|POS=DET|PronType=Prs , Abbr=Yes|POS=ADJ , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Rel , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Rel , NumType=Card|POS=NUM , POS=INTJ , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Int , Degree=Sup|POS=ADV|Polarity=Neg , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Int , POS=ADV|Polarity=Neg , Definite=Ind|Number=Sing|POS=DET|PronType=Ind , POS=ADJ , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Prs , Case=Gen|Definite=Def|Degree=Pos|Gender=Masc|Number=Sing|POS=ADJ , Definite=Ind|Gender=Neut|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Tot , Gender=Neut|Number=Sing|POS=DET|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=PRON|PronType=Neg , Case=Nom|Gender=Masc|Number=Sing|POS=ADJ , Definite=Ind|Number=Plur|POS=DET|PronType=Neg , Case=Nom|Definite=Def|Degree=Sup|Gender=Masc|Number=Sing|POS=ADJ , Definite=Def|Gender=Masc|Number=Sing|POS=PRON|PronType=Dem , Definite=Def|Gender=Neut|Number=Sing|POS=PRON|PronType=Tot , Definite=Ind|Gender=Neut|Number=Sing|POS=DET|PronType=Neg , Gender=Com|Number=Sing|POS=DET|PronType=Prs , Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Pass , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Ind , Case=Acc|Definite=Def|POS=PRON|PronType=Ind , Foreign=Yes|POS=ADP , Definite=Ind|Gender=Com|Number=Sing|POS=DET|PronType=Prs , Definite=Def|POS=PRON|Poss=Yes|PronType=Dem , Abbr=Yes|Mood=Imp|POS=VERB|VerbForm=Fin|Voice=Act , Mood=Sub|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Definite=Ind|Gender=Com|Number=Sing|POS=PRON|PronType=Rel , Foreign=Yes|POS=CCONJ , POS=DET|PronType=Art , Definite=Ind|Number=Sing|POS=DET|PronType=Prs , Definite=Ind|Number=Plur|POS=DET|PronType=Tot , Case=Nom|Definite=Def|Gender=Com|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Rel , Case=Acc|Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Definite=Def|Number=Plur|POS=PRON|PronType=Prs , Case=Gen|Definite=Ind|Degree=Pos|Gender=Com|Number=Sing|POS=ADJ , Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Degree=Pos|POS=ADV|Polarity=Neg , Mood=Sub|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Act , POS=PRON|PronType=Ind , Definite=Ind|POS=DET|PronType=Neg , Definite=Ind|Number=Plur|POS=PRON|PronType=Neg , POS=CCONJ|Polarity=Neg , Case=Nom|Gender=Masc|Number=Sing|POS=NOUN , Case=Acc|Gender=Fem|Number=Sing|POS=NOUN , Case=Nom|Definite=Def|Number=Plur|POS=PRON|PronType=Tot , Definite=Def|Number=Plur|POS=DET|PronType=Tot , Mood=Imp|POS=AUX|VerbForm=Fin|Voice=Act , Foreign=Yes|POS=ADV , Definite=Def|POS=PRON|Poss=Yes|PronType=Rcp , Case=Acc|Definite=Def|POS=PRON|Polarity=Neg|PronType=Ind |
parser |
ROOT , acl , acl:cleft , acl:relcl , advcl , advmod , amod , appos , aux , aux:pass , case , cc , ccomp , compound:prt , conj , cop , csubj , dep , det , dislocated , expl , fixed , flat:name , iobj , mark , nmod , nmod:poss , nsubj , nsubj:pass , nummod , obj , obl , obl:agent , parataxis , punct , xcomp |
ner |
EVN , LOC , MSR , OBJ , ORG , PRS , TME , WRK |
Accuracy
Type | Score |
---|---|
TOKEN_ACC |
99.99 |
TOKEN_P |
99.95 |
TOKEN_R |
99.96 |
TOKEN_F |
99.95 |
TAG_ACC |
95.35 |
POS_ACC |
96.36 |
MORPH_ACC |
95.87 |
MORPH_MICRO_P |
97.83 |
MORPH_MICRO_R |
97.45 |
MORPH_MICRO_F |
97.64 |
SENTS_P |
92.02 |
SENTS_R |
96.03 |
SENTS_F |
93.98 |
DEP_UAS |
83.10 |
DEP_LAS |
78.57 |
LEMMA_ACC |
95.59 |
ENTS_P |
86.06 |
ENTS_R |
76.16 |
ENTS_F |
80.81 |
📄 License
This project is licensed under the CC BY - SA 4.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models