đ layoutlmv3-finetuned-wildreceipt
This model is a fine - tuned version of [microsoft/layoutlmv3 - base](https://huggingface.co/microsoft/layoutlmv3 - base) on the wild_receipt dataset. It is used for key information extraction from receipt images, achieving high precision, recall, F1 score, and accuracy on the evaluation set.
đ Quick Start
This section is not provided in the original README, so it is skipped.
⨠Features
This model is fine - tuned on the wild_receipt dataset, which is specifically designed for key information extraction from receipts. It has achieved excellent performance on multiple evaluation metrics such as precision, recall, F1 score, and accuracy.
đ Documentation
Model Performance
This model achieves the following results on the evaluation set:
- Loss: 0.3108
- Precision: 0.8772
- Recall: 0.8799
- F1: 0.8785
- Accuracy: 0.9249
Training and Evaluation Data
The WildReceipt dataset consists of 1740 receipt images, and contains 25 key information categories, and a total of about 69000 text boxes. 1268 and 472 images are used for training and testing respectively to train the LayoutLMv3 model for Key Information Extraction.
Training procedure
The training code: https://github.com/Theivaprakasham/layoutlmv3/blob/main/training_codes/LayoutLMv3_training_WildReceipts_dataset.ipynb
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e - 05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Precision |
Recall |
F1 |
Accuracy |
No log |
0.32 |
100 |
1.3143 |
0.6709 |
0.2679 |
0.3829 |
0.6700 |
No log |
0.63 |
200 |
0.8814 |
0.6478 |
0.5195 |
0.5766 |
0.7786 |
No log |
0.95 |
300 |
0.6568 |
0.7205 |
0.6491 |
0.6829 |
0.8303 |
No log |
1.26 |
400 |
0.5618 |
0.7544 |
0.7072 |
0.7300 |
0.8519 |
1.0284 |
1.58 |
500 |
0.5003 |
0.7802 |
0.7566 |
0.7682 |
0.8687 |
1.0284 |
1.89 |
600 |
0.4454 |
0.7941 |
0.7679 |
0.7807 |
0.8748 |
1.0284 |
2.21 |
700 |
0.4314 |
0.8142 |
0.7928 |
0.8033 |
0.8852 |
1.0284 |
2.52 |
800 |
0.3870 |
0.8172 |
0.8200 |
0.8186 |
0.8953 |
1.0284 |
2.84 |
900 |
0.3629 |
0.8288 |
0.8369 |
0.8329 |
0.9025 |
0.4167 |
3.15 |
1000 |
0.3537 |
0.8540 |
0.8200 |
0.8366 |
0.9052 |
0.4167 |
3.47 |
1100 |
0.3383 |
0.8438 |
0.8285 |
0.8361 |
0.9063 |
0.4167 |
3.79 |
1200 |
0.3403 |
0.8297 |
0.8493 |
0.8394 |
0.9062 |
0.4167 |
4.1 |
1300 |
0.3271 |
0.8428 |
0.8545 |
0.8487 |
0.9110 |
0.4167 |
4.42 |
1400 |
0.3182 |
0.8491 |
0.8518 |
0.8504 |
0.9131 |
0.2766 |
4.73 |
1500 |
0.3111 |
0.8491 |
0.8539 |
0.8515 |
0.9129 |
0.2766 |
5.05 |
1600 |
0.3177 |
0.8397 |
0.8620 |
0.8507 |
0.9124 |
0.2766 |
5.36 |
1700 |
0.3091 |
0.8676 |
0.8548 |
0.8612 |
0.9191 |
0.2766 |
5.68 |
1800 |
0.3080 |
0.8508 |
0.8645 |
0.8576 |
0.9162 |
0.2766 |
5.99 |
1900 |
0.3059 |
0.8492 |
0.8662 |
0.8576 |
0.9163 |
0.2114 |
6.31 |
2000 |
0.3184 |
0.8536 |
0.8657 |
0.8596 |
0.9147 |
0.2114 |
6.62 |
2100 |
0.3161 |
0.8583 |
0.8713 |
0.8648 |
0.9184 |
0.2114 |
6.94 |
2200 |
0.3055 |
0.8707 |
0.8682 |
0.8694 |
0.9220 |
0.2114 |
7.26 |
2300 |
0.3004 |
0.8689 |
0.8745 |
0.8717 |
0.9219 |
0.2114 |
7.57 |
2400 |
0.3111 |
0.8701 |
0.8720 |
0.8711 |
0.9211 |
0.174 |
7.89 |
2500 |
0.3130 |
0.8599 |
0.8741 |
0.8669 |
0.9198 |
0.174 |
8.2 |
2600 |
0.3034 |
0.8661 |
0.8748 |
0.8704 |
0.9219 |
0.174 |
8.52 |
2700 |
0.3005 |
0.8799 |
0.8673 |
0.8736 |
0.9225 |
0.174 |
8.83 |
2800 |
0.3043 |
0.8687 |
0.8804 |
0.8745 |
0.9240 |
0.174 |
9.15 |
2900 |
0.3121 |
0.8776 |
0.8704 |
0.8740 |
0.9242 |
0.1412 |
9.46 |
3000 |
0.3131 |
0.8631 |
0.8755 |
0.8692 |
0.9204 |
0.1412 |
9.78 |
3100 |
0.3067 |
0.8715 |
0.8773 |
0.8744 |
0.9233 |
0.1412 |
10.09 |
3200 |
0.3021 |
0.8751 |
0.8812 |
0.8782 |
0.9248 |
0.1412 |
10.41 |
3300 |
0.3092 |
0.8651 |
0.8808 |
0.8729 |
0.9228 |
0.1412 |
10.73 |
3400 |
0.3084 |
0.8776 |
0.8749 |
0.8762 |
0.9237 |
0.1254 |
11.04 |
3500 |
0.3156 |
0.8738 |
0.8785 |
0.8761 |
0.9237 |
0.1254 |
11.36 |
3600 |
0.3131 |
0.8723 |
0.8818 |
0.8770 |
0.9244 |
0.1254 |
11.67 |
3700 |
0.3108 |
0.8778 |
0.8781 |
0.8780 |
0.9250 |
0.1254 |
11.99 |
3800 |
0.3097 |
0.8778 |
0.8771 |
0.8775 |
0.9239 |
0.1254 |
12.3 |
3900 |
0.3115 |
0.8785 |
0.8801 |
0.8793 |
0.9251 |
0.111 |
12.62 |
4000 |
0.3108 |
0.8772 |
0.8799 |
0.8785 |
0.9249 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
đ License
This section is not provided in the original README, so it is skipped.