đ lmv2-g-aadhaar-236doc-06-14
This model is a fine - tuned version of [microsoft/layoutlmv2 - base - uncased](https://huggingface.co/microsoft/layoutlmv2 - base - uncased) on the None dataset. It offers high - precision results in various aspects such as Aadhaar, Dob, Gender, and Name recognition, providing reliable performance for related tasks.
đ Quick Start
This model is a fine - tuned version of [microsoft/layoutlmv2 - base - uncased](https://huggingface.co/microsoft/layoutlmv2 - base - uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0427
- Aadhaar Precision: 0.9783
- Aadhaar Recall: 1.0
- Aadhaar F1: 0.9890
- Aadhaar Number: 45
- Dob Precision: 0.9787
- Dob Recall: 1.0
- Dob F1: 0.9892
- Dob Number: 46
- Gender Precision: 1.0
- Gender Recall: 0.9787
- Gender F1: 0.9892
- Gender Number: 47
- Name Precision: 0.9574
- Name Recall: 0.9375
- Name F1: 0.9474
- Name Number: 48
- Overall Precision: 0.9785
- Overall Recall: 0.9785
- Overall F1: 0.9785
- Overall Accuracy: 0.9939
đ Documentation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e - 05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: constant
- num_epochs: 30
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Aadhaar Precision |
Aadhaar Recall |
Aadhaar F1 |
Aadhaar Number |
Dob Precision |
Dob Recall |
Dob F1 |
Dob Number |
Gender Precision |
Gender Recall |
Gender F1 |
Gender Number |
Name Precision |
Name Recall |
Name F1 |
Name Number |
Overall Precision |
Overall Recall |
Overall F1 |
Overall Accuracy |
1.0024 |
1.0 |
188 |
0.5819 |
0.9348 |
0.9556 |
0.9451 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9574 |
0.9783 |
47 |
0.5172 |
0.625 |
0.5660 |
48 |
0.8410 |
0.8817 |
0.8609 |
0.9744 |
0.4484 |
2.0 |
376 |
0.3263 |
0.8980 |
0.9778 |
0.9362 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.6842 |
0.8125 |
0.7429 |
48 |
0.8838 |
0.9409 |
0.9115 |
0.9733 |
0.2508 |
3.0 |
564 |
0.2230 |
0.9318 |
0.9111 |
0.9213 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8913 |
0.8542 |
0.8723 |
48 |
0.9560 |
0.9355 |
0.9457 |
0.9811 |
0.165 |
4.0 |
752 |
0.1728 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8444 |
0.7917 |
0.8172 |
48 |
0.9457 |
0.9355 |
0.9405 |
0.9844 |
0.1081 |
5.0 |
940 |
0.0987 |
0.8958 |
0.9556 |
0.9247 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
1.0 |
0.9167 |
0.9565 |
48 |
0.9728 |
0.9624 |
0.9676 |
0.9928 |
0.0834 |
6.0 |
1128 |
0.0984 |
0.8980 |
0.9778 |
0.9362 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9574 |
0.9783 |
47 |
0.8148 |
0.9167 |
0.8627 |
48 |
0.9227 |
0.9624 |
0.9421 |
0.9833 |
0.0676 |
7.0 |
1316 |
0.0773 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9111 |
0.8542 |
0.8817 |
48 |
0.9620 |
0.9516 |
0.9568 |
0.9894 |
0.0572 |
8.0 |
1504 |
0.0786 |
0.8235 |
0.9333 |
0.8750 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8936 |
0.875 |
0.8842 |
48 |
0.9263 |
0.9462 |
0.9362 |
0.9872 |
0.0481 |
9.0 |
1692 |
0.0576 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9362 |
0.9167 |
0.9263 |
48 |
0.9679 |
0.9731 |
0.9705 |
0.99 |
0.0349 |
10.0 |
1880 |
0.0610 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8958 |
0.8958 |
0.8958 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9894 |
0.0287 |
11.0 |
2068 |
0.0978 |
0.9091 |
0.8889 |
0.8989 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9348 |
0.8958 |
0.9149 |
48 |
0.9615 |
0.9409 |
0.9511 |
0.985 |
0.0297 |
12.0 |
2256 |
0.0993 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.7959 |
0.8125 |
0.8041 |
48 |
0.9312 |
0.9462 |
0.9387 |
0.9833 |
0.0395 |
13.0 |
2444 |
0.0824 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.875 |
0.875 |
0.875 |
48 |
0.9519 |
0.9570 |
0.9544 |
0.9872 |
0.0333 |
14.0 |
2632 |
0.0788 |
0.8913 |
0.9111 |
0.9011 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9556 |
0.8958 |
0.9247 |
48 |
0.9617 |
0.9462 |
0.9539 |
0.9867 |
0.0356 |
15.0 |
2820 |
0.0808 |
0.84 |
0.9333 |
0.8842 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9565 |
0.9167 |
0.9362 |
48 |
0.9468 |
0.9570 |
0.9519 |
0.9867 |
0.0192 |
16.0 |
3008 |
0.0955 |
0.8462 |
0.9778 |
0.9072 |
45 |
0.9787 |
1.0 |
0.9892 |
46 |
0.9583 |
0.9787 |
0.9684 |
47 |
0.9070 |
0.8125 |
0.8571 |
48 |
0.9211 |
0.9409 |
0.9309 |
0.9822 |
0.016 |
17.0 |
3196 |
0.0936 |
0.9130 |
0.9333 |
0.9231 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9318 |
0.8542 |
0.8913 |
48 |
0.9615 |
0.9409 |
0.9511 |
0.9867 |
0.0218 |
18.0 |
3384 |
0.1009 |
0.9545 |
0.9333 |
0.9438 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8571 |
0.875 |
0.8660 |
48 |
0.9514 |
0.9462 |
0.9488 |
0.9844 |
0.0165 |
19.0 |
3572 |
0.0517 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9333 |
0.875 |
0.9032 |
48 |
0.9728 |
0.9624 |
0.9676 |
0.9906 |
0.0198 |
20.0 |
3760 |
0.0890 |
0.9167 |
0.9778 |
0.9462 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9149 |
0.8958 |
0.9053 |
48 |
0.9572 |
0.9624 |
0.9598 |
0.9867 |
0.0077 |
21.0 |
3948 |
0.0835 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.88 |
0.9167 |
0.8980 |
48 |
0.9577 |
0.9731 |
0.9653 |
0.9872 |
0.0088 |
22.0 |
4136 |
0.0427 |
0.9783 |
1.0 |
0.9890 |
45 |
0.9787 |
1.0 |
0.9892 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9574 |
0.9375 |
0.9474 |
48 |
0.9785 |
0.9785 |
0.9785 |
0.9939 |
0.0078 |
23.0 |
4324 |
0.0597 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8654 |
0.9375 |
0.9 |
48 |
0.9529 |
0.9785 |
0.9655 |
0.9889 |
0.0178 |
24.0 |
4512 |
0.0524 |
0.9574 |
1.0 |
0.9783 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
1.0 |
0.875 |
0.9333 |
48 |
0.9890 |
0.9624 |
0.9755 |
0.9922 |
0.012 |
25.0 |
4700 |
0.0637 |
0.9375 |
1.0 |
0.9677 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.8491 |
0.9375 |
0.8911 |
48 |
0.9430 |
0.9785 |
0.9604 |
0.9867 |
0.0135 |
26.0 |
4888 |
0.0668 |
0.9184 |
1.0 |
0.9574 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.86 |
0.8958 |
0.8776 |
48 |
0.9424 |
0.9677 |
0.9549 |
0.9867 |
0.0123 |
27.0 |
5076 |
0.0713 |
0.9565 |
0.9778 |
0.9670 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9375 |
0.9375 |
0.9375 |
48 |
0.9731 |
0.9731 |
0.9731 |
0.9911 |
0.0074 |
28.0 |
5264 |
0.0675 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9 |
0.9375 |
0.9184 |
48 |
0.9577 |
0.9731 |
0.9653 |
0.99 |
0.0051 |
29.0 |
5452 |
0.0713 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9167 |
0.9167 |
0.9167 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9906 |
0.0027 |
30.0 |
5640 |
0.0725 |
0.9362 |
0.9778 |
0.9565 |
45 |
1.0 |
1.0 |
1.0 |
46 |
1.0 |
0.9787 |
0.9892 |
47 |
0.9167 |
0.9167 |
0.9167 |
48 |
0.9626 |
0.9677 |
0.9651 |
0.9906 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
đ License
This project is licensed under the CC - BY - NC - SA 4.0 license.