Wav2vec2 Large Xlsr 53 Levantine Arabic
An Arabic speech recognition model fine-tuned on the Arabic speech corpus dataset, based on the facebook/wav2vec2-large-xlsr-53 model
Downloads 46
Release Time : 3/2/2022
Model Overview
This is an automatic speech recognition (ASR) model optimized for Arabic, capable of converting Arabic speech into text.
Model Features
Arabic Optimization
Specially fine-tuned for Arabic speech, improving recognition accuracy for Arabic speech
No Language Model Required
Can be used directly without additional language model support
16kHz Sampling Rate Support
Supports audio input with a 16kHz sampling rate
Model Capabilities
Arabic speech recognition
Speech-to-text conversion
Use Cases
Speech Transcription
Arabic Speech-to-Text
Convert Arabic speech content into text format
Voice Assistants
Arabic Voice Command Recognition
Used as a speech recognition component for Arabic voice assistants or voice control systems
🚀 Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned on the Arabic Speech Corpus dataset for automatic speech recognition.
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the Arabic Speech Corpus dataset. When using this model, ensure that your speech input is sampled at 16kHz.
🚀 Quick Start
The model can be used directly (without a language model) as follows:
💻 Usage Examples
🔍 Basic Usage
import librosa
import torch
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
dataset = load_dataset("arabic_speech_corpus", split="test") # "test[:n]" for n examples
processor = Wav2Vec2Processor.from_pretrained("elgeish/wav2vec2-large-xlsr-53-arabic")
model = Wav2Vec2ForCTC.from_pretrained("elgeish/wav2vec2-large-xlsr-53-arabic")
model.eval()
def prepare_example(example):
example["speech"], _ = librosa.load(example["file"], sr=16000)
example["text"] = example["text"].replace("-", " ").replace("^", "v")
example["text"] = " ".join(w for w in example["text"].split() if w != "sil")
return example
dataset = dataset.map(prepare_example, remove_columns=["file", "orthographic", "phonetic"])
def predict(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
with torch.no_grad():
predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
batch["predicted"] = processor.tokenizer.batch_decode(predicted)
return batch
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])
for reference, predicted in zip(dataset["text"], dataset["predicted"]):
print("reference:", reference)
print("predicted:", predicted)
print("reference (untransliterated):", buckwalter.untrans(reference))
print("predicted (untransliterated):", buckwalter.untrans(predicted))
print("--")
Here's the output:
reference: >atAHat lilbA}iEi lmutajaw~ili >an yakuwna jA*iban lilmuwATini l>aqal~i daxlan
predicted: >ataAHato lilobaA}iEi Alomutajaw~ili >ano yakuwna jaA*ibAF lilomuwaATini Alo>aqal~i daxolAF
reference (untransliterated): أَتاحَت لِلبائِعِ لمُتَجَوِّلِ أَن يَكُونَ جاذِبَن لِلمُواطِنِ لأَقَلِّ دَخلَن
predicted (untransliterated): أَتَاحَتْ لِلْبَائِعِ الْمُتَجَوِّلِ أَنْ يَكُونَ جَاذِباً لِلْمُوَاطِنِ الْأَقَلِّ دَخْلاً
--
reference: >aHrazat muntaxabAtu lbarAziyli wa>lmAnyA waruwsyA fawzan fiy muqAbalAtihim l<iEdAdiy~api l~atiy >uqiymat istiEdAdan linihA}iy~Ati ka>si lEAlam >al~atiy satanTaliqu baEda >aqal~i min >usbuwE
predicted: >aHorazato munotaxabaAtu AlobaraAziyli wa>alomaAnoyaA waruwsoyaA fawozAF fiy muqaAbalaAtihimo >aliEodaAdiy~api Al~atiy >uqiymat AsotiEodaAdAF linahaA}iy~aAti ka>osi AloEaAlamo >al~atiy satanoTaliqu baEoda >aqal~i mino >usobuwEo
reference (untransliterated): أَحرَزَت مُنتَخَباتُ لبَرازِيلِ وَألمانيا وَرُوسيا فَوزَن فِي مُقابَلاتِهِم لإِعدادِيَّةِ لَّتِي أُقِيمَت ِستِعدادَن لِنِهائِيّاتِ كَأسِ لعالَم أَلَّتِي سَتَنطَلِقُ بَعدَ أَقَلِّ مِن أُسبُوع
predicted (untransliterated): أَحْرَزَتْ مُنْتَخَبَاتُ الْبَرَازِيلِ وَأَلْمَانْيَا وَرُوسْيَا فَوْزاً فِي مُقَابَلَاتِهِمْ أَلِعْدَادِيَّةِ الَّتِي أُقِيمَت اسْتِعْدَاداً لِنَهَائِيَّاتِ كَأْسِ الْعَالَمْ أَلَّتِي سَتَنْطَلِقُ بَعْدَ أَقَلِّ مِنْ أُسْبُوعْ
--
reference: >axfaqa majlisu ln~uw~Abi ll~ubnAniy~u fiy xtiyAri ra}iysin jadiydin lilbilAdi xalafan lilr~a}iysi lHAliy~i l~a*iy tantahiy wilAyatuhu fiy lxAmisi wAlEi$riyn min mAyuw >ayAra lmuqbil
predicted: >axofaqa majolisu Aln~uw~aAbi All~ubonaAniy~u fiy AxotiyaAri ra}iysK jadiydK lilobilaAdi xalafAF lilr~a}iysi AloHaAliy~i Al~a*iy tanotahiy wilaAyatuhu fiy AloxaAmisi waAloEi$oriyno mino maAyuw >ay~aAra Alomuqobilo
reference (untransliterated): أَخفَقَ مَجلِسُ لنُّوّابِ للُّبنانِيُّ فِي ختِيارِ رَئِيسِن جَدِيدِن لِلبِلادِ خَلَفَن لِلرَّئِيسِ لحالِيِّ لَّذِي تَنتَهِي وِلايَتُهُ فِي لخامِسِ والعِشرِين مِن مايُو أَيارَ لمُقبِل
predicted (untransliterated): أَخْفَقَ مَجْلِسُ النُّوَّابِ اللُّبْنَانِيُّ فِي اخْتِيَارِ رَئِيسٍ جَدِيدٍ لِلْبِلَادِ خَلَفاً لِلرَّئِيسِ الْحَالِيِّ الَّذِي تَنْتَهِي وِلَايَتُهُ فِي الْخَامِسِ وَالْعِشْرِينْ مِنْ مَايُو أَيَّارَ الْمُقْبِلْ
--
reference: <i* sayaHDuru liqA'a ha*A lEAmi xamsun wavalAvuwna minhum
predicted: <i*o sayaHoDuru riqaA'a ha*aA AloEaAmi xamosN wa valaAvuwna minohumo
reference (untransliterated): إِذ سَيَحضُرُ لِقاءَ هَذا لعامِ خَمسُن وَثَلاثُونَ مِنهُم
predicted (untransliterated): إِذْ سَيَحْضُرُ رِقَاءَ هَذَا الْعَامِ خَمْسٌ وَ ثَلَاثُونَ مِنْهُمْ
--
reference: >aElanati lHukuwmapu lmiSriy~apu Ean waqfi taqdiymi ld~aEmi ln~aqdiy~i limuzAriEiy lquTni <iEtibAran mina lmuwsimi lz~irAEiy~i lmuqbil
predicted: >aEolanati AloHukuwmapu AlomiSoriy~apu Eano waqofi taqodiymi Ald~aEomi Aln~aqodiy~i limuzaAriEiy AloquToni <iEotibaArAF mina Alomuwsimi Alz~iraAEiy~i Alomuqobilo
reference (untransliterated): أَعلَنَتِ لحُكُومَةُ لمِصرِيَّةُ عَن وَقفِ تَقدِيمِ لدَّعمِ لنَّقدِيِّ لِمُزارِعِي لقُطنِ إِعتِبارَن مِنَ لمُوسِمِ لزِّراعِيِّ لمُقبِل
predicted (untransliterated): أَعْلَنَتِ الْحُكُومَةُ الْمِصْرِيَّةُ عَنْ وَقْفِ تَقْدِيمِ الدَّعْمِ النَّقْدِيِّ لِمُزَارِعِي الْقُطْنِ إِعْتِبَاراً مِنَ الْمُوسِمِ الزِّرَاعِيِّ الْمُقْبِلْ
--
reference: >aElanat wizArapu lSi~Ha~pi lsa~Euwdiya~pu lyawma Ean wafAtayni jadiydatayni biAlfayruwsi lta~Ajiyi kuwruwnA nuwfil
predicted: >aEolanato wizaArapu AlS~iH~api Als~aEuwdiy~apu Aloyawoma Eano wafaAtayoni jadiydatayoni biAlofayoruwsi Alt~aAjiy kuwruwnaA nuwfiylo
reference (untransliterated): أَعلَنَت وِزارَةُ لصِّحَّةِ لسَّعُودِيَّةُ ليَومَ عَن وَفاتَينِ جَدِيدَتَينِ بِالفَيرُوسِ لتَّاجِيِ كُورُونا نُوفِل
predicted (untransliterated): أَعْلَنَتْ وِزَارَةُ الصِّحَّةِ السَّعُودِيَّةُ الْيَوْمَ عَنْ وَفَاتَيْنِ جَدِيدَتَيْنِ بِالْفَيْرُوسِ التَّاجِي كُورُونَا نُوفِيلْ
--
reference: <iftutiHati ljumuEapa faE~Aliy~Atu ld~awrapi lr~AbiEapa Ea$rapa mina lmihrajAni ld~awliy~i lilfiylmi bimur~Aki$
predicted: <ifotutiHapi AlojumuwEapa faEaAliyaAtu Ald~aworapi Alr~aAbiEapa Ea$orapa miyna AlomihorajaAni Ald~awoliy~i lilofiylomi bimur~Aki$
reference (untransliterated): إِفتُتِحَتِ لجُمُعَةَ فَعّالِيّاتُ لدَّورَةِ لرّابِعَةَ عَشرَةَ مِنَ لمِهرَجانِ لدَّولِيِّ لِلفِيلمِ بِمُرّاكِش
predicted (untransliterated): إِفْتُتِحَةِ الْجُمُوعَةَ فَعَالِيَاتُ الدَّوْرَةِ الرَّابِعَةَ عَشْرَةَ مِينَ الْمِهْرَجَانِ الدَّوْلِيِّ لِلْفِيلْمِ بِمُرّاكِش
--
reference: >ak~adat Ea$ru duwalin Earabiy~apin $Arakati lxamiysa lmADiya fiy jtimAEi jd~ap muwAfaqatahA EalY l<inDimAmi <ilY Hilfin maEa lwilAyAti lmut~aHidapi li$an~i Hamlapin Easkariy~apin munas~aqapin Did~a tanZiymi >ald~awlapi l<islAmiy~api
predicted: >ak~adato Ea$oru duwalK Earabiy~apK $aArakapiy Aloxamiysa AlomaADiya fiy AjotimaAEi jad~ap muwaAfaqatahaA EalaY Alo<inoDimaAmi <ilaY HilofK maEa AlowilaAyaAti Alomut~aHidapi li$an~i HamolapK Easokariy~apK munas~aqapK id~a tanoZiymi Ald~awolapi Alo<isolaAmiy~api
reference (untransliterated): أَكَّدَت عَشرُ دُوَلِن عَرَبِيَّةِن شارَكَتِ لخَمِيسَ لماضِيَ فِي جتِماعِ جدَّة مُوافَقَتَها عَلى لإِنضِمامِ إِلى حِلفِن مَعَ لوِلاياتِ لمُتَّحِدَةِ لِشَنِّ حَملَةِن عَسكَرِيَّةِن مُنَسَّقَةِن ضِدَّ تَنظِيمِ أَلدَّولَةِ لإِسلامِيَّةِ
predicted (untransliterated): أَكَّدَتْ عَشْرُ دُوَلٍ عَرَبِيَّةٍ شَارَكَةِي الْخَمِيسَ الْمَاضِيَ فِي اجْتِمَاعِ جَدَّة مُوَافَقَتَهَا عَلَى الْإِنْضِمَامِ إِلَى حِلْفٍ مَعَ الْوِلَايَاتِ الْمُتَّحِدَةِ لِشَنِّ حَمْلَةٍ عَسْكَرِيَّةٍ مُنَسَّقَةٍ ِدَّ تَنْظِيمِ الدَّوْلَةِ الْإِسْلَامِيَّةِ
--
reference: <iltaHaqa luwkA ziydAna <ibnu ln~ajmi ld~awliy~i lfaransiy~i ljazA}iriy~i l>Sli zayni ld~iyni ziydAn biAlfariyq
predicted: <ilotaHaqa luwkaA ziydaAna <ibonu Aln~ajomi Ald~awoliy~i Alofaranosiy~i AlojazaA}iriy~i Alo>aSoli zayoni Ald~iyni zayodaAno biAlofariyqo
reference (untransliterated): إِلتَحَقَ لُوكا زِيدانَ إِبنُ لنَّجمِ لدَّولِيِّ لفَرَنسِيِّ لجَزائِرِيِّ لأصلِ زَينِ لدِّينِ زِيدان بِالفَرِيق
predicted (untransliterated): إِلْتَحَقَ لُوكَا زِيدَانَ إِبْنُ النَّجْمِ الدَّوْلِيِّ الْفَرَنْسِيِّ الْجَزَائِرِيِّ الْأَصْلِ زَيْنِ الدِّينِ زَيْدَانْ بِالْفَرِيقْ
--
reference: >alma$Akilu l~atiy yatrukuhA xalfahu dA}iman
predicted: Aloma$aAkilu Al~atiy yatorukuhaA xalofahu daA}imAF
reference (untransliterated): أَلمَشاكِلُ لَّتِي يَترُكُها خَلفَهُ دائِمَن
predicted (untransliterated): الْمَشَاكِلُ الَّتِي يَتْرُكُهَا خَلْفَهُ دَائِماً
--
reference: >al~a*iy yataDam~anu mazAyA barmajiy~apan wabaSariy~apan Eadiydapan tahdifu limuwAkabapi lt~aTaw~uri lHASili fiy lfaDA'i l<ilktruwniy watashiyli stifAdapi lqur~A'i min xadamAti lmawqiE
predicted: >al~a*iy yataDam~anu mazaAyaA baromajiy~apF wabaSariy~apF EadiydapF tahodifu limuwaAkabapi Alt~aTaw~uri AloHaASili fiy AlofaDaA'i Alo<iloktoruwniy watasohiyli AsotifaAdapi Aloqur~aA'i mino xadaAmaAti AlomawoqiEo
reference (untransliterated): أَلَّذِي يَتَضَمَّنُ مَزايا بَرمَجِيَّةَن وَبَصَرِيَّةَن عَدِيدَةَن تَهدِفُ لِمُواكَبَةِ لتَّطَوُّرِ لحاصِلِ فِي لفَضاءِ لإِلكترُونِي وَتَسهِيلِ ستِفادَةِ لقُرّاءِ مِن خَدَماتِ لمَوقِع
predicted (untransliterated): أَلَّذِي يَتَضَمَّنُ مَزَايَا بَرْمَجِيَّةً وَبَصَرِيَّةً عَدِيدَةً تَهْدِفُ لِمُوَاكَبَةِ التَّطَوُّرِ الْحَاصِلِ فِي الْفَضَاءِ الْإِلْكتْرُونِي وَتَسْهِيلِ اسْتِفَادَةِ الْقُرَّاءِ مِنْ خَدَامَاتِ الْمَوْقِعْ
--
reference: >alfikrapu wa<in badat jadiydapan EalY mujtamaEin yaEiy$u wAqiEan sayi}aan lA tu$aj~iEu EalY lD~aHik
predicted: >alofikorapu wa<inobadato jadiydapF EalaY mujotamaEK yaEiy$u waAqi Eano say~i}AF laA tu$aj~iEu EalaY AlD~aHiko
reference (untransliterated): أَلفِكرَةُ وَإِن بَدَت جَدِيدَةَن عَلى مُجتَمَعِن يَعِيشُ واقِعَن سَيِئََن لا تُشَجِّعُ عَلى لضَّحِك
predicted (untransliterated): أَلْفِكْرَةُ وَإِنْبَدَتْ جَدِيدَةً عَلَى مُجْتَمَعٍ يَعِيشُ وَاقِ عَنْ سَيِّئاً لَا تُشَجِّعُ عَلَى الضَّحِكْ
--
reference: mu$iyraan <ilY xidmapi lqur>Ani lkariymi wataEziyzi EalAqapi lmuslimiyna bihi
predicted: mu$iyrAF <ilaY xidomapi Aloquro|ni Alokariymi wataEoziyzi EalaAqapi Alomusolimiyna bihi
reference (untransliterated): مُشِيرََن إِلى خِدمَةِ لقُرأانِ لكَرِيمِ وَتَعزِيزِ عَلاقَةِ لمُسلِمِينَ بِهِ
predicted (untransliterated): مُشِيراً إِلَى خِدْمَةِ الْقُرْآنِ الْكَرِيمِ وَتَعْزِيزِ عَلَاقَةِ الْمُسْلِمِينَ بِهِ
--
reference: <in~ahu EindamA yakuwnu >aHadu lz~awjayni yastaxdimu >aHada >a$kAli lt~iknuwluwjyA >akvara mina l>Axar
predicted: <in~ahu EinodamaA yakuwnu >aHadu Alz~awojayoni yasotaxodimu >aHada >a$okaAli Alt~iykonuwluwjoyaA >akovara mina Alo|xaro
reference (untransliterated): إِنَّهُ عِندَما يَكُونُ أَحَدُ لزَّوجَينِ يَستَخدِمُ أَحَدَ أَشكالِ لتِّكنُولُوجيا أَكثَرَ مِنَ لأاخَر
predicted (untransliterated): إِنَّهُ عِنْدَمَا يَكُونُ أَحَدُ الزَّوْجَيْنِ يَسْتَخْدِمُ أَحَدَ أَشْكَالِ التِّيكْنُولُوجْيَا أَكْثَرَ مِنَ الْآخَرْ
--
reference: wa*alika biHuDuwri ra}yisi lhay}api
predicted: wa*alika biHuDuwri ra}iysi Alohayo>api
reference (untransliterated): وَذَلِكَ بِحُضُورِ رَئيِسِ لهَيئَةِ
predicted (untransliterated): وَذَلِكَ بِحُضُورِ رَئِيسِ الْهَيْأَةِ
--
reference: wa*alika fiy buTuwlapa ka>si lEAlami lil>andiyapi baEda nusxapin tAriyxiy~apin >alEAma lmADiya <intahat bitatwiyji bAyrin miyuwniyxa l>almAniy~a EalY HisAbi lr~ajA'i lmagribiy~i fiy >aw~ali ta>ah~ulin lifariyqin Earabiy~in <ilY nihA}iy~i lmusAbaqapi
predicted: wa*alika fiy buTuwlapi ka>osiy AloEaAlami lilo>anodiyapi baEoda nusoxapK taAriyxiy~apK >aloEaAma AlomaADiya <inotahato bitatowiyji bAyorinmoyuwnixa Alo>alomaAniy~a EalaY HisaAbi Alr~ajaA'i Alomagoribiy~ifiy >aw~ali ta>ah~ulK lifariyqKEarabiy~K <ilaY nihaA}iy~i AlomusaAbaqapi
reference (untransliterated): وَذَلِكَ فِي بُطُولَةَ كَأسِ لعالَمِ لِلأَندِيَةِ بَعدَ نُسخَةِن تارِيخِيَّةِن أَلعامَ لماضِيَ إِنتَهَت بِتَتوِيجِ بايرِن مِيُونِيخَ لأَلمانِيَّ عَلى حِسابِ لرَّجاءِ لمَغرِبِيِّ فِي أَوَّلِ تَأَهُّلِن لِفَرِيقِن عَرَبِيِّن إِلى نِهائِيِّ لمُسابَقَةِ
predicted (untransliterated): وَذَلِكَ فِي بُطُولَةِ كَأْسِي الْعَالَمِ لِلْأَنْدِيَةِ بَعْدَ نُسْخَةٍ تَارِيخِيَّةٍ أَلْعَامَ الْمَاضِيَ إِنْتَهَتْ بِتَتْوِيجِ بايْرِنمْيُونِخَ الْأَلْمَانِيَّ عَلَى حِسَابِ الرَّجَاءِ الْمَغْرِبِيِّفِي أَوَّلِ تَأَهُّلٍ لِفَرِيقٍعَرَبِيٍّ إِلَى نِهَائِيِّ الْمُسَابَقَةِ
--
reference: bal yajibu lbaHvu fiymA tumav~iluhu min <iDAfapin Haqiyqiy~apin lil<iqtiSAdi lmaSriy~i fiy majAlAti lt~awZiyf biAEtibAri >an~a mu$kilapa lbiTAlapi mina lmu$kilAti lr~a}iysiy~api fiy miSr
predicted: balo yajibu AlobaHovu fiymaA tumav~iluhu mino <iDaAfapK Haqiyqiy~apK lilo<iqotiSaAdi AlomaSoriy~i fiy majaAlaAti Alt~awoZiyfo biAEotibaAri >an~a mu$okilapa AlobiTaAlapi mina Alomu$okilaAti Alr~a}iysiy~api fiy miSori
reference (untransliterated): بَل يَجِبُ لبَحثُ فِيما تُمَثِّلُهُ مِن إِضافَةِن حَقِيقِيَّةِن لِلإِقتِصادِ لمَصرِيِّ فِي مَجالاتِ لتَّوظِيف بِاعتِبارِ أَنَّ مُشكِلَةَ لبِطالَةِ مِنَ لمُشكِلاتِ لرَّئِيسِيَّةِ فِي مِصر
predicted (untransliterated): بَلْ يَجِبُ الْبَحْثُ فِيمَا تُمَثِّلُهُ مِنْ إِضَافَةٍ حَقِيقِيَّةٍ لِلْإِقْتِصَادِ الْمَصْرِيِّ فِي مَجَالَاتِ التَّوْظِيفْ بِاعْتِب
📄 License
This project is licensed under the Apache-2.0 license.
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models