🚀 XLS-R-300M - Bulgarian
This model is a fine - tuned version of [facebook/wav2vec2 - xls - r - 300m](https://huggingface.co/facebook/wav2vec2 - xls - r - 300m) on the MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It's designed for automatic speech recognition, offering a practical solution for transcribing Bulgarian speech.
🚀 Quick Start
Evaluation Commands
- To evaluate on
mozilla - foundation/common_voice_8_0
with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test
- To evaluate on
speech - recognition - community - v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
✨ Features
- Fine - Tuned Model: Based on [facebook/wav2vec2 - xls - r - 300m](https://huggingface.co/facebook/wav2vec2 - xls - r - 300m), fine - tuned on the MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - BG dataset for better performance in Bulgarian speech recognition.
- Multiple Evaluation Metrics: Evaluated on multiple datasets with metrics like WER (Word Error Rate) and CER (Character Error Rate) to measure performance accurately.
📦 Installation
No specific installation steps are provided in the original document, so this section is skipped.
📚 Documentation
Model Performance
This model achieves the following results on the evaluation set:
Model Index
Property |
Details |
Model Name |
XLS - R - 300M - Bulgarian |
Task |
Automatic Speech Recognition |
Datasets |
mozilla - foundation/common_voice_8_0, speech - recognition - community - v2/dev_data, speech - recognition - community - v2/eval_data |
Metrics |
WER, CER |
Training and Evaluation
Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e - 05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training Results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
3.1589 |
3.48 |
400 |
3.0830 |
1.0 |
2.8921 |
6.96 |
800 |
2.6605 |
0.9982 |
1.3049 |
10.43 |
1200 |
0.5069 |
0.5707 |
1.1349 |
13.91 |
1600 |
0.4159 |
0.5041 |
1.0686 |
17.39 |
2000 |
0.3815 |
0.4746 |
0.999 |
20.87 |
2400 |
0.3541 |
0.4343 |
0.945 |
24.35 |
2800 |
0.3266 |
0.4132 |
0.9058 |
27.83 |
3200 |
0.2969 |
0.3771 |
0.8672 |
31.3 |
3600 |
0.2802 |
0.3553 |
0.8313 |
34.78 |
4000 |
0.2662 |
0.3380 |
0.8068 |
38.26 |
4400 |
0.2528 |
0.3181 |
0.7796 |
41.74 |
4800 |
0.2537 |
0.3073 |
0.7621 |
45.22 |
5200 |
0.2503 |
0.3036 |
0.7611 |
48.7 |
5600 |
0.2477 |
0.2991 |
Framework Versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Evaluation Results
Dataset |
Split |
WER (Without LM) |
WER (With LM) |
mozilla - foundation/common_voice_8_0 |
test |
30.07 |
21.195 |
🔧 Technical Details
The model is a fine - tuned version of [facebook/wav2vec2 - xls - r - 300m](https://huggingface.co/facebook/wav2vec2 - xls - r - 300m). The fine - tuning process involves adjusting the model's parameters on the MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - BG dataset. The use of specific hyperparameters during training, such as the learning rate, batch size, and optimizer, is crucial for achieving good performance.
📄 License
The model is released under the Apache - 2.0 license.