🚀 Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
This repository offers a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model. It's specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self - supervised model for audio - visual speech recognition. It uses both audio and visual modalities to achieve strong performance, especially in noisy environments.
✨ Features
- Pre - trained Models: You can access pre - trained AV - HuBERT models fine - tuned on the MuAViC dataset. These pre - trained models are exported from the MuAViC repository.
- Inference scripts: Easily set up pipelines using Huggingface’s interface.
- Data preprocessing scripts: These include normalizing frame rates, extracting lips, and audio.
📦 Installation
First, clone the repository and set up the environment:
git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
cd AV-HuBERT-S2S
conda create -n avhuberts2s python=3.9
conda activate avhuberts2s
pip install -r requirements.txt
💻 Usage Examples
Basic Usage
Here is the code to run an example:
python run_example.py
from src.model.avhubert2text import AV2TextForConditionalGeneration
from src.dataset.load_data import load_feature
from transformers import Speech2TextTokenizer
import torch
if __name__ == "__main__":
AVAILABEL_LANGUAGES = ["ar", "de", "el", "en", "es", "fr", "it", "pt", "ru", "multilingual"]
language = "ru"
assert language in AVAILABEL_LANGUAGES, f"Language {language} is not available, please choose one of {AVAILABEL_LANGUAGES}"
model_name_or_path = f"nguyenvulebinh/AV-HuBERT-MuAViC-{language}"
model = AV2TextForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir='./model-bin')
tokenizer = Speech2TextTokenizer.from_pretrained(model_name_or_path, cache_dir='./model-bin')
model = model.cuda().eval()
video_example = f"./example/video_processed/{language}_lip_movement.mp4"
audio_example = f"./example/video_processed/{language}_audio.wav"
if not os.path.exists(video_example) or not os.path.exists(audio_example):
print(f"WARNING: Example video and audio for {language} is not available english will be used instead")
video_example = f"./example/video_processed/en_lip_movement.mp4"
audio_example = f"./example/video_processed/en_audio.wav"
sample = load_feature(
video_example,
audio_example
)
audio_feats = sample['audio_source'].cuda()
video_feats = sample['video_source'].cuda()
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
output = model.generate(
audio_feats,
attention_mask=attention_mask,
video=video_feats,
max_length=1024,
)
print(tokenizer.batch_decode(output, skip_special_tokens=True))
Advanced Usage - Data Preprocessing
mkdir model-bin
cd model-bin
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
cp raw_video.mp4 ./example/
python src/dataset/video_to_audio_lips.py
📚 Documentation
Pretrained AVSR Model
📄 License
This project is licensed under CC - BY - NC 4.0.
📚 Acknowledgments
- AV - HuBERT: A large part of the codebase in this repository is adapted from the original AV - HuBERT implementation.
- MuAViC Repository: We thank the creators of the MuAViC dataset and repository for providing the pre - trained models used in this project.
📖 Citation
@article{anwar2023muavic,
title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
journal={arXiv preprint arXiv:2303.00628},
year={2023}
}