🚀 Wav2Vec2-Large-XLSR-53-Estonian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on Estonian using the Common Voice. When using this model, ensure that your speech input is sampled at 16kHz.
✨ Features
- Datasets:
- Common Voice
- NST Estonian ASR Database
- Metrics:
- WER (Word Error Rate)
- CER (Character Error Rate)
- Tags:
- Audio
- Automatic Speech Recognition
- Speech
- XLSR - Fine - Tuning Week
- License: Apache - 2.0
- Model Index:
- Name: XLSR Wav2Vec2 Large 53 - Estonian by Vasilis
- Results:
- Task:
- Name: Speech Recognition
- Type: Automatic Speech Recognition
- Dataset:
- Name: Common Voice et
- Type: common_voice
- Args: et
- Metrics:
- Name: Test WER
- Type: wer
- Value: 30.658320
- Name: Test CER
- Type: cer
- Value: 5.261490
📦 Installation
No specific installation steps are provided in the original document, so this section is skipped.
💻 Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "et", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "et", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian")
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-Estonian")
model.to("cuda")
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']"
resampler = {
48_000: torchaudio.transforms.Resample(48_000, 16_000),
44100: torchaudio.transforms.Resample(44100, 16_000),
32000: torchaudio.transforms.Resample(32000, 16_000)
}
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
📚 Documentation
Evaluation
The model can be evaluated on the Estonian test data of Common Voice as shown in the advanced usage code example.
Test Result: 30.658320 %
Training
Common voice train
and validation
sets were used for finetuning for 20000 steps (approx. 116 epochs). Both the feature extractor
(Wav2Vec2FeatureExtractor
) and feature projection
(Wav2Vec2FeatureProjection
) layer were frozen. Only the encoder
layer (Wav2Vec2EncoderStableLayerNorm
) was finetuned.
📄 License
This model is licensed under the Apache - 2.0 license.